1
|
Hasanpour Z, Salehi P, Bunch L, Khoramjouy M, Bararjanian M, Staerk D, Faizi M. Semi-synthesis of novel buprenorphine derivatives and their anti-nociceptive properties and dependency potential. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Novel 1,2,3-triazole-tethered N-norbuprenorphine derivatives with an OMe or OH group at the C3 position were synthesized alongside with evaluation of their analgesic properties. The analgesic activities of the resulting library were investigated via tail flick test in mice. Our results indicated that 10b and 10e were as effective as the starting compounds 8 and 9 with ED50 equal to 16.59 and 19.44 mg/kg, respectively. To investigate the effect of a methyl group at C3 on biological properties, the most active compounds were O-demethylated and their anti-nociceptive effects were assessed. The new O-demethylated derivatives (11b and 11e) showed better analgesic properties than the parent compounds with ED50 of 14.73 and 15.80 mg/kg, respectively. Naloxone prevented the analgesic effect of the synthesized compounds, indicating that the opioid receptors are highly involved in the anti-nociceptive effects. The potential dependency effects of the most potent derivatives were studied by condition place preference test in mice and compared with morphine and buprenorphine. Interestingly, 10b, 10e, 11b, and 11e did not show any dependency effect, similar to buprenorphine.
Collapse
Affiliation(s)
- Zahra Hasanpour
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Mona Khoramjouy
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Bararjanian
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Dan Staerk
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Singh R, Rao HK, Singh TG. Neuropathic pain in diabetes mellitus: Challenges and future trends. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.obmed.2020.100215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Manu MS, Rachana KS, Advirao GM. The correlation between insulin and OCT-6 transcription factor in Schwann cells and sciatic nerve of diabetic rats. Genes Dis 2018; 5:130-136. [PMID: 30258942 PMCID: PMC6147042 DOI: 10.1016/j.gendis.2017.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/11/2017] [Indexed: 11/26/2022] Open
Abstract
Insulin signal is one of the vital signaling cascade required for Schwann cells to myelinate the axons of peripheral nervous system (PNS). Myelin formation of peripheral nerve is a complex molecular event controlled by different neurotrophic and transcription factors. The altered or failure in this signaling progression is one of the reasons behind the demyelination of peripheral neurons in diabetic peripheral neuropathy (DPN). The Schwann cell in PNS includes POU domain transcription factor OCT-6 expression. This factor is considered as crucial for the initiation and enhancement of myelination during nerve regeneration. To know the importance of OCT-6 gene, here we studied the long term expression of OCT-6 nuclear protein in sciatic nerve of normal and diabetic neuropathic rats. Also for the first time we elucidated the role of insulin in controlling the expression of OCT-6 in hyperglycemic Schwann cells and sciatic nerve of diabetic neuropathic rats. The results shows that, there will be long term OCT-6 expression in sciatic nerve of adult rats and also their significant decrease is observed in the diabetic condition. But, addition of Insulin for primary Schwann cells and diabetic rats shows the increased OCT-6 expression in both invivo and invitro. Together these results indicate the failure of OCT-6 support in neuropathy and also the importance of insulin signaling cascade in the expression of OCT-6 transcription factor.
Collapse
Affiliation(s)
- Mallahalli S Manu
- Department of Biochemistry, Davangere University, Davangere, Karnataka, India
| | | | - Gopal M Advirao
- Department of Biochemistry, Davangere University, Davangere, Karnataka, India
| |
Collapse
|
4
|
Rachana KS, Manu MS, Advirao GM. Insulin-induced upregulation of lipoprotein lipase in Schwann cells during diabetic peripheral neuropathy. Diabetes Metab Syndr 2018; 12:525-530. [PMID: 29602762 DOI: 10.1016/j.dsx.2018.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/16/2018] [Indexed: 01/03/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the major complications associated with diabetes. It is characterized by the degeneration of the myelin sheath around axons, referred to as demyelination. Such demyelinations are often caused by reduced lipid component of the myelin sheath. Since, lipoprotein lipase (LPL) provides the lipid for myelin sheath by hydrolysing the triglyceride rich lipoproteins, and also helps in the uptake of lipids by the Schwann cells (SCs) for its utilization, LPL is considered as the important factor in the regeneration of myelin sheath during diabetic neuropathy. Earlier reports from our laboratory have provided the insights of insulin and its receptor in SCs during diabetic neuropathy. In order to evaluate the long term effect of insulin on lipid metabolism during diabetic neuropathy, in this study, we analyzed the expression of LPL in SCs under normal, high glucose and insulin treated conditions. A decrease in the expression of LPL was observed in SCs of high glucose condition and it was reversed upon insulin treatment. Histochemical observations of sciatic nerve of insulin treated neuropathy subjects showed the improved nerve morphology, signifying the importance of insulin in restoring the pathophysiology of diabetic neuropathy.
Collapse
Affiliation(s)
| | - Mallahalli S Manu
- Department of Biochemistry, Davangere University, Davangere, Karnataka, India
| | - Gopal M Advirao
- Department of Biochemistry, Davangere University, Davangere, Karnataka, India.
| |
Collapse
|
5
|
Tiwari R, Siddiqui MH, Mahmood T, Bagga P, Ahsan F, Shamim A. Herbal Remedies: A Boon for Diabetic Neuropathy. J Diet Suppl 2018; 16:470-490. [PMID: 29580105 DOI: 10.1080/19390211.2018.1441203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Diabetic neuropathy is a chronic complication of diabetes mellitus affecting about 50% of patients. Its symptoms include decreased motility and severe pain in peripheral parts. The pathogenesis involved is an abnormality in blood vessels that supply the peripheral nerves, metabolic disorders such as myo-inositol depletion, and increased nonenzymatic glycation. Moreover, oxidative stress in neurons results in activation of multiple biochemical pathways, which results in the generation of free radicals. Apart from available marketed formulations, extensive research is being carried out on herbal-based natural products to control hyperglycemia and its associated complications. This review is focused to provide a summary on diabetic neuropathy covering its etiology, types, and existing work on herbal-based therapies, which include pure compounds isolated from plant materials, plant extracts, and Ayurvedic preparations.
Collapse
Affiliation(s)
- Reshu Tiwari
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Mohd Haris Siddiqui
- b Associate Professor & Head, Department of Bioengineering , Integral University , Dasauli, Lucknow , India
| | - Tarique Mahmood
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Paramdeep Bagga
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Farogh Ahsan
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| | - Arshiya Shamim
- a Faculty of Pharmacy , Integral University , Dasauli , Lucknow , India
| |
Collapse
|
6
|
Manu MS, Rachana KS, Advirao GM. Altered expression of IRS2 and GRB2 in demyelination of peripheral neurons: Implications in diabetic neuropathy. Neuropeptides 2017; 62:71-79. [PMID: 28065675 DOI: 10.1016/j.npep.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/28/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
Demyelination of the peripheral nerves and dysfunction of Schwann cells (SCs) are the chronic complications involved in the development of peripheral neuropathy among diabetic patients. Insulin signaling plays an important role in restoring the myelin proteins in diabetic peripheral neuropathy (DPN). Since insulin levels are altered in diabetes, it becomes of great interest to appreciate the role and regulation of docking and adaptor protein, how these proteins respond to variations in the levels of insulin as experienced in juvenile diabetes. Tyrosine phosphorylation of receptor protein kinases provides a docking site for the activation of adaptor proteins which are the key regulators of insulin signaling pathway. In this report, we studied the long term effect of insulin as a neurotrophic factor and identified the isoform of receptor substrate involved in the propagation of insulin signal in SCs. We also studied the ability of insulin to regulate the expression of different receptor substrates like insulin receptor substrate-1 (IRS1), insulin receptor substrate-2 (IRS2) and growth factor receptor-bound protein-2 (GRB2) that propagate the insulin signaling and also their variation in hyperglycemic SCs and sciatic nerve of the diabetic rats. Results confirmed that IRS2 is the key receptor substrate involved in insulin signal transduction. But, a radical increase in the phosphorylation of IRS2 at serine 731 prevents the recruitment of GRB2 adaptor protein which may fail further to connect the Ras and other pathways required to the cell for its survival and to maintain integrity. These findings prove that SCs and sciatic nerve express IRS proteins that are altered by diabetes and thereby insulin signaling downstream is impaired and that contribute to the pathogenesis of DPN.
Collapse
Affiliation(s)
- Mallahalli S Manu
- Department of Biochemistry, Davangere University, Davangere, Karnataka, India
| | | | - Gopal M Advirao
- Department of Biochemistry, Davangere University, Davangere, Karnataka, India.
| |
Collapse
|
7
|
Rachana KS, Manu MS, Advirao GM. Insulin influenced expression of myelin proteins in diabetic peripheral neuropathy. Neurosci Lett 2016; 629:110-115. [PMID: 27373589 DOI: 10.1016/j.neulet.2016.06.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 01/11/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the downstream complications of diabetes. This complication is caused by the deficiency of insulin action and subsequent hyperglycemia, but the details of their pathogenesis remain unclear. Hence, it is of critical importance to understand how such hormonal variation affects the expression of myelin proteins such as myelin basic protein (MBP) and myelin associated glycoprotein (MAG) in the peripheral nerve. An earlier report from our lab has demonstrated the expression of insulin receptors (IR) in Schwann cells (SCs) of sciatic nerve. To assess the neurotrophic role of insulin in diabetic neuropathy, we studied the expression of these myelin proteins under control, DPN and insulin treated DPN subjects at developmental stages. Further, the expression of these myelin proteins was correlated with the expression of insulin receptor. Expression of myelin proteins was significantly reduced in the diabetic model compared to normal, and upregulated in insulin treated diabetic rats. Similarly, an in vitro study was also carried out in SCs grown at high glucose and insulin treated conditions. The expression pattern of myelin proteins in SCs was comparable to that of in vivo samples. In addition, quantitative study of myelin genes by real time PCR has also showed the significant expression pattern change in the insulin treated and non-treated DPN subjects. Taken together, these results corroborate the critical importance of insulin as a neurotrophic factor in demyelinized neurons in diabetic neuropathy.
Collapse
Affiliation(s)
| | - Mallahalli S Manu
- Department of Biochemistry, Davangere University, Davangere, Karnataka, India
| | - Gopal M Advirao
- Department of Biochemistry, Davangere University, Davangere, Karnataka, India.
| |
Collapse
|
8
|
Use of natural compounds in the management of diabetic peripheral neuropathy. Molecules 2014; 19:2877-95. [PMID: 24603557 PMCID: PMC6271156 DOI: 10.3390/molecules19032877] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/20/2014] [Accepted: 02/26/2014] [Indexed: 11/18/2022] Open
Abstract
Nephropathy, retinopathy cardiomyopathy and peripheral neuropathy are all recognized as important complications in about 50% of diabetes mellitus (DM) patients, mostly related to a poor glycemic control or to an improper management of this pathology. In any case, amongst others, diabetic peripheral neuropathy (DPN) seems the leading and most painful complication usually affecting many DM patients. For this reason, this work was conceived to review the large variety of strategies adopted for management of DPN, starting from the most conventional therapies to arrive at alternative approaches. From this perspective, both the most popular pharmacological treatments used to respond to the poorly effect of common analgesics—non-steroidal anti-inflammatory drugs (NSAIDS) and opioids—understood as gabapentin vs. pregabalin clinical use, and the guidelines provided by Oriental Medicine as well as by a long list of natural compounds that many authors identify as possible therapeutic or alternative agents to replace or to combine with the existing therapies will be included. Moreover, in the effort to provide the widest panel of remedies, the most antique techniques of acupuncture and electrostimulation will be considered as alternative, which are useful approaches to take into account in any non-pharmacological strategy for DPN management.
Collapse
|