1
|
Masry SHD, Taha TH, Botros WA, Mahfouz H, Al-Kahtani SN, Ansari MJ, Hafez EE. Antimicrobial activity of camphor tree silver nano-particles against foulbrood diseases and finding out new strain of Serratia marcescens via DGGE-PCR, as a secondary infection on honeybee larvae. Saudi J Biol Sci 2021; 28:2067-2075. [PMID: 33911922 PMCID: PMC8071921 DOI: 10.1016/j.sjbs.2021.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
American foulbrood (AFB) and European foulbrood (EFB) are the two major bacterial diseases affecting honeybees, leading to a decrease in viability of the hive, decreasing honey production, and resulting in significant economic losses to beekeepers. Due to the inefficiency and/or low efficacy of some antibiotics, researches with nanotechnology represent, possibly, new therapeutic strategies. Nanostructure drugs have presented some advantagesover the conventional medicines, such as slow, gradual and controlled release, increased bioavailability, and reduced side-effects. In this study, different infected larvae were collected from two apiaries; the combs that had symptoms of American and European foulbrood were isolated. In vitro antimicrobial activity of camphor tree silver nano-particles against foulbrood diseases were characterized using UV-Vis spectrophotometry and scanning electron microscope (SEM) that proves the formation of silver nanoparticles with size range 160-660 nm. The antimicrobial activity of the silver nanoparticles was tested using agar diffusion assay and proved their ability to effectively cease the pathogenic bacterial growth in both AFB and EFB. DGGE-PCR technique has been applied for the identification of un-common bacterial infections honeybees depending on 16S rRNA amplification from their total extracted DNA and has been identified as Serratia marcescens (TES), deposited in GenBank with a new accession number (MT240613). The results were confirmed strain has been detected by DGGE-PCR analysis causing uniquely infected brood that was attacked by the American Foulbrood It could be concluded that greenly synthesized silver nanoparticles is projected to be used as effective treatment for honeybee bacterial diseases. These material need more investigations under field conditions and study the possibility of its residues in honeybee products such as honey, and beeswax.
Collapse
Affiliation(s)
- Saad Hamdy Daif Masry
- Department of Plant Protection and Molecular Diagnosis, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
- Abu Dhabi Agriculture and Food Safety Authority, Al Ain, United Arab Emirates
| | - Tarek Hosny Taha
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - William A. Botros
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Hatem Mahfouz
- Department of Plant Production, Faculty of Environment Agricultural Science, Arish University, Egypt
| | - Saad Naser Al-Kahtani
- Arid Land Agriculture Department, College of Agricultural Sciences & Foods, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), India
| | - Elsayed Elsayed Hafez
- Department of Plant Protection and Molecular Diagnosis, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| |
Collapse
|
2
|
Amynthas corticis genome reveals molecular mechanisms behind global distribution. Commun Biol 2021; 4:135. [PMID: 33514865 PMCID: PMC7846840 DOI: 10.1038/s42003-021-01659-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Earthworms (Annelida: Crassiclitellata) are widely distributed around the world due to their ancient origination as well as adaptation and invasion after introduction into new habitats over the past few centuries. Herein, we report a 1.2 Gb complete genome assembly of the earthworm Amynthas corticis based on a strategy combining third-generation long-read sequencing and Hi-C mapping. A total of 29,256 protein-coding genes are annotated in this genome. Analysis of resequencing data indicates that this earthworm is a triploid species. Furthermore, gene family evolution analysis shows that comprehensive expansion of gene families in the Amynthas corticis genome has produced more defensive functions compared with other species in Annelida. Quantitative proteomic iTRAQ analysis shows that expression of 147 proteins changed in the body of Amynthas corticis and 16 S rDNA sequencing shows that abundance of 28 microorganisms changed in the gut of Amynthas corticis when the earthworm was incubated with pathogenic Escherichia coli O157:H7. Our genome assembly provides abundant and valuable resources for the earthworm research community, serving as a first step toward uncovering the mysteries of this species, and may provide molecular level indicators of its powerful defensive functions, adaptation to complex environments and invasion ability.
Collapse
|
3
|
Wang BG, Xu HB, Wei H, Zeng ZL, Xu F. Oral administration of Bifidobacterim bifidum for modulating microflora, acid and bile resistance, and physiological indices in mice. Can J Microbiol 2014; 61:155-63. [PMID: 25630400 DOI: 10.1139/cjm-2014-0694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bifidobacteria are generally acknowledged as major gut microflora used as probiotics, which promote human health. In this study, the effects of the administration of Bifidobacterim bifidum on modulating gastrointestinal (GI) tract microflora, acid and bile resistance, and physiological indices in BALB/c mice were investigated. Results showed that B. bifidum can significantly improve the ecosystem of the GI tract by increasing the amount of probiotics and reducing the populations of pathogenic bacteria, as measured by plate count and real-time PCR. After exposure to simulated GI tract conditions, the growth of gut microflora in the B. bifidum group was higher than that in the control group when incubated for 12 h in MRS or nutrient broth adjusted to pH 2.0 or 3.0 or in the presence of a concentration of bile salt (0.45% m/v). The blood biochemical index was examined, and the physiological effect of the cell-free extract of gut microflora was evaluated by measuring the activity of various enzymes, including α-glucosidases, esterase, and lactate dehydrogenase. This study suggested that a B. bifidum strain can stabilize blood sugar, lower cholesterol levels in serum, and improve metabolic activity. Moreover, B. bifidum was a promising enhancer of microbial diversity in mouse intestine and played a vital role in human physiological processes, which can benefit the health of a host.
Collapse
Affiliation(s)
- Bao-Gui Wang
- a State Key Laboratory of Food Science and Engineering, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | | | | | | | | |
Collapse
|
4
|
Sean D, Wang YE, Slater GW. Can gel concentration gradients improve two-dimensional DNA displays? Electrophoresis 2014; 35:736-45. [PMID: 24375111 DOI: 10.1002/elps.201300412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/11/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Abstract
The abrupt reduction in gel electrophoretic mobility that is observed when a dsDNA fragment is partially denatured has recently been predicted to exhibit a dependence upon the gel pore size. Using theoretical modeling, we demonstrate that this dependence can be exploited and used to improve the performance of 2D display of DNA. We report experimental evidence of this dependence and propose a new separation system in which a gel porosity gradient is utilized in a way analogous to temperature or denaturant gradients in traditional 2D display. Such gel porosity gradients can also be used in conjunction with denaturant gradients to improve 2D display results. We test these new ideas by modeling the fragment mobilities and computing the final fragment positions to find optimal 2D separation conditions.
Collapse
Affiliation(s)
- David Sean
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|