1
|
Zhang Y, Yang Y, Zhang L, Zhang J, Zhou Z, Yang J, Hu Y, Gao X, Chen R, Huang Z, Xu Z, Li L. Antifungal mechanisms of the antagonistic bacterium Bacillus mojavensis UTF-33 and its potential as a new biopesticide. Front Microbiol 2023; 14:1201624. [PMID: 37293221 PMCID: PMC10246745 DOI: 10.3389/fmicb.2023.1201624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Biological control has gradually become the dominant means of controlling fungal disease over recent years. In this study, an endophytic strain of UTF-33 was isolated from acid mold (Rumex acetosa L.) leaves. Based on 16S rDNA gene sequence comparison, and biochemical and physiological characteristics, this strain was formally identified as Bacillus mojavensis. Bacillus mojavensis UTF-33 was sensitive to most of the antibiotics tested except neomycin. Moreover, the filtrate fermentation solution of Bacillus mojavensis UTF-33 had a significant inhibitory effect on the growth of rice blast and was used in field evaluation tests, which reduced the infestation of rice blast effectively. Rice treated with filtrate fermentation broth exhibited multiple defense mechanisms in response, including the enhanced expression of disease process-related genes and transcription factor genes, and significantly upregulated the gene expression of titin, salicylic acid pathway-related genes, and H2O2 accumulation, in plants; this may directly or indirectly act as an antagonist to pathogenic infestation. Further analysis revealed that the n-butanol crude extract of Bacillus mojavensis UTF-33 could retard or even inhibit conidial germination and prevent the formation of adherent cells both in vitro and in vivo. In addition, the amplification of functional genes for biocontrol using specific primers showed that Bacillus mojavensis UTF-33 expresses genes that can direct the synthesis of bioA, bmyB, fenB, ituD, srfAA and other substances; this information can help us to determine the extraction direction and purification method for inhibitory substances at a later stage. In conclusion, this is the first study to identify Bacillus mojavensis as a potential agent for the control of rice diseases; this strain, and its bioactive substances, have the potential to be developed as biopesticides.
Collapse
Affiliation(s)
- Yifan Zhang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Yanmei Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Luyi Zhang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jia Zhang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Zhanmei Zhou
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Jinchang Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Gao
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Rongjun Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Zhengjian Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Zhengjun Xu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Lihua Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Avcı A, Değirmen M, Akçay FA. Investigation of lentil flour utilization for the production of protease by Bacillus subtilis ZBP4. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2020.1870109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ayşe Avcı
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya, Turkey
| | - Merve Değirmen
- Department of Nanoscience and Nanotechnology, Institute of Natural and Applied Sciences, Erciyes University, Kayseri, Talas, Turkey
| | - Fikriye Alev Akçay
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya, Turkey
| |
Collapse
|
3
|
Statistical modelling and optimization of protease production by an autochthonous Bacillus aryabhattai Ab15-ES: A response surface methodology approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101528] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Optimization for coproduction of protease and cellulase from Bacillus subtilis M-11 by the Box–Behnken design and their detergent compatibility. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00025-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Hammami A, Bayoudh A, Abdelhedi O, Nasri M. Low-cost culture medium for the production of proteases by Bacillus mojavensis SA and their potential use for the preparation of antioxidant protein hydrolysate from meat sausage by-products. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1352-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Hammami A, Fakhfakh N, Abdelhedi O, Nasri M, Bayoudh A. Proteolytic and amylolytic enzymes from a newly isolated Bacillus mojavensis SA: Characterization and applications as laundry detergent additive and in leather processing. Int J Biol Macromol 2017; 108:56-68. [PMID: 29180048 DOI: 10.1016/j.ijbiomac.2017.11.148] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/06/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
The present work aims to study the simultaneous production of highly alkaline proteases and thermostable α-amylases by a newly isolated bacterium Bacillus mojavensis SA. The optimum pH and temperature of amylase activity were 9.0 and 55°C, respectively, while those of the proteolytic activity were 12.0 and 60°C, respectively. Both α-amylase and protease enzymes showed a high stability towards a wide range of pH and temperature. Furthermore, SA crude enzymes were relatively stable towards non-ionic (Tween 20, Tween 80 and Triton X-100) and anionic (SDS) surfactants, as well as oxidizing agents. Both activities were improved by the presence of polyethylene glycol 4000 and glycerol. Additionally, the crude enzymes showed excellent stability against various solid and liquid detergents. Wash performance analysis revealed that the SA crude enzymes exhibited a remarkable efficiency in the removal of a variety type of stains, such as blood, chocolate, coffee and oil. On the other side, SA proteases revealed a potential dehairing activity of animal hide without chemical assistance or fibrous proteins hydrolysis. Thus, considering their promising properties, B. mojavensis SA crude enzymes could be used in several biotechnological bioprocesses.
Collapse
Affiliation(s)
- Amal Hammami
- Laboratory of Enzyme Engineering and Microbiology, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Nahed Fakhfakh
- Laboratory of Enzyme Engineering and Microbiology, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia.
| | - Ola Abdelhedi
- Laboratory of Enzyme Engineering and Microbiology, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Ahmed Bayoudh
- Laboratory of Enzyme Engineering and Microbiology, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
8
|
Walid AL, Neveen MAEK, Ebaa EES, Ehab REH. Isolation and characterization of a haloalkaliphilic protease producer bacterium from Wadi Natrun in Egypt. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2017.15984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R. Int J Biol Macromol 2017; 101:383-397. [PMID: 28315440 DOI: 10.1016/j.ijbiomac.2017.03.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/23/2017] [Accepted: 03/10/2017] [Indexed: 11/20/2022]
Abstract
In this study, we aimed to optimize the cultural and nutritional conditions for protease production by Lysinibacillus fusiformis strain C250R in submerged fermentation process using statistical methodology. The most significant factors (gruel, wheat bran, yeast extract, and FeSO4) were identified by Plackett-Burman design. Response surface methodology (RSM) was used to determine the optimum levels of the screened factors and their interaction. Under the optimized conditions, protease yield 3100U/mL was 4.5 folds higher than those obtained by the use of the initial conditions (680U/mL). Additionally, a new extracellular 51kDa-protease, designated SAPLF, was purified and biochemically characterized from strain C250R. It shows optimum activity at 70°C and pH 10. Its half-life times at 70 and 80°C were 10 and 6-h, respectively. Irreversible inhibition of enzyme activity of SAPLF with serine protease inhibitors demonstrated that it belongs to the serine protease family. Interestingly, its catalytic efficiency was higher than that of SPVP from Aeribacillus pallidus strain VP3 and Alcalase Ultra 2.5L from Bacillus licheniformis. This study demonstrated that SAPLF has a high detergent compatibility and an excellent stain removal compared to Alcalase Ultra 2.5L; which offers an interesting potential for its application in the laundry detergent industry.
Collapse
|
10
|
Nasri R, Abdelhedi O, Jemil I, Daoued I, Hamden K, Kallel C, Elfeki A, Lamri-Senhadji M, Boualga A, Nasri M, Karra-Châabouni M. Ameliorating effects of goby fish protein hydrolysates on high-fat-high-fructose diet-induced hyperglycemia, oxidative stress and deterioration of kidney function in rats. Chem Biol Interact 2015; 242:71-80. [DOI: 10.1016/j.cbi.2015.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/03/2015] [Accepted: 08/07/2015] [Indexed: 12/26/2022]
|