1
|
Kalita BJ, Sit N. Characterization of cellulase immobilized by different methods of entrapment and its application for carrot juice extraction. Food Sci Biotechnol 2024; 33:1163-1175. [PMID: 38440682 PMCID: PMC10908674 DOI: 10.1007/s10068-023-01422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 03/06/2024] Open
Abstract
In the present study, cellulase has been immobilized by two different methods of entrapment viz. encapsulation in calcium alginate and matrix entrapment in agar. The calcium alginate encapsulated beads showed an immobilization efficiency of 92.11% and agar entrapped cubes showed an immobilization efficiency of 97.63%. The free cellulase was found to show optimum activity at 50 °C and pH 4, had a Km of 39.29 mg/mL, Vmax of 0.50 μmol/min. The calcium alginate encapsulated beads showed optimum activity at 50 °C, and pH 8, had a Km of 72.28 mg/mL and Vmax of 1.32 μmol/min. The agar entrapped cubes showed optimum activity at 60 °C, and pH 4, had a Km of 13.08 mg/mL, and Vmax of 0.38 μmol/min. The immobilized cellulases could be used for 5 cycles after which their activity deteriorated. The immobilized as well as the free enzyme were effective in increasing the yield of carrot juice.
Collapse
Affiliation(s)
- Bhaskar Jyoti Kalita
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028 India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028 India
| |
Collapse
|
2
|
Xu C, Tong S, Sun L, Gu X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Carbohydr Polym 2023; 321:121319. [PMID: 37739542 DOI: 10.1016/j.carbpol.2023.121319] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
Cellulase-mediated lignocellulosic biorefinery plays a crucial role in the production of high-value biofuels and chemicals, with enzymatic hydrolysis being an essential component. The advent of cellulase immobilization has revolutionized this process, significantly enhancing the efficiency, stability, and reusability of cellulase enzymes. This review offers a thorough analysis of the fundamental principles underlying immobilization, encompassing various immobilization approaches such as physical adsorption, covalent binding, entrapment, and cross-linking. Furthermore, it explores a diverse range of carrier materials, including inorganic, organic, and hybrid/composite materials. The review also focuses on emerging approaches like multi-enzyme co-immobilization, oriented immobilization, immobilized enzyme microreactors, and enzyme engineering for immobilization. Additionally, it delves into novel carrier technologies like 3D printing carriers, stimuli-responsive carriers, artificial cellulosomes, and biomimetic carriers. Moreover, the review addresses recent obstacles in cellulase immobilization, including molecular-level immobilization mechanism, diffusion limitations, loss of cellulase activity, cellulase leaching, and considerations of cost-effectiveness and scalability. The knowledge derived from this review is anticipated to catalyze the evolution of more efficient and sustainable biocatalytic systems for lignocellulosic biomass conversion, representing the current state-of-the-art in cellulase immobilization techniques.
Collapse
Affiliation(s)
- Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shanshan Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Liqun Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
3
|
Zhao Y, Li X, Guo S, Xu J, Cui Y, Zheng M, Liu J. Thermodynamics and Physicochemical Properties of Immobilized Maleic Anhydride-Modified Xylanase and Its Application in the Extraction of Oligosaccharides from Wheat Bran. Foods 2023; 12:2424. [PMID: 37372634 DOI: 10.3390/foods12122424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Xylanases are the preferred enzymes for the extracting of oligosaccharides from wheat bran. However, free xylanases have poor stability and are difficult to reuse, which limit their industrial application. In the present study, we covalently immobilized free maleic anhydride-modified xylanase (FMA-XY) to improve its reusability and stability. The immobilized maleic anhydride-modified xylanase (IMA-XY) exhibited better stability compared with the free enzyme. After six repeated uses, 52.24% of the activity of the immobilized enzyme remained. The wheat bran oligosaccharides extracted using IMA-XY were mainly xylopentoses, xylohexoses, and xyloheptoses, which were the β-configurational units and α-configurational units of xylose. The oligosaccharides also exhibited good antioxidant properties. The results indicated that FMA-XY can easily be recycled and can remain stable after immobilization; therefore, it has good prospects for future industrial applications.
Collapse
Affiliation(s)
- Yang Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Xinrui Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Shuo Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingwen Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Yan Cui
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
4
|
For biotechnological applications: Purification and characterization of recombinant and nanoconjugated xylanase enzyme from thermophilic Bacillus subtilis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
El-Shora HM, El-Sharkawy RM, Khateb AM, Darwish DB. Production and immobilization of β-glucanase from Aspergillus niger with its applications in bioethanol production and biocontrol of phytopathogenic fungi. Sci Rep 2021; 11:21000. [PMID: 34697353 PMCID: PMC8545931 DOI: 10.1038/s41598-021-00237-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
β-Glucanase has received great attention in recent years regarding their potential biotechnological applications and antifungal activities. Herein, the specific objectives of the present study were to purify, characterize and immobilize β-glucanase from Aspergillus niger using covalent binding and cross linking techniques. The evaluation of β-glucanase in hydrolysis of different lignocellulosic wastes with subsequent bioethanol production and its capability in biocontrol of pathogenic fungi was investigated. Upon nutritional bioprocessing, β-glucanase production from A. niger EG-RE (MW390925.1) preferred ammonium nitrate and CMC as the best nitrogen and carbon sources, respectively. The soluble enzyme was purified by (NH4)2SO4, DEAE-Cellulose and Sephadex G200 with 10.33-fold and specific activity of 379.1 U/mg protein. Tyrosyl, sulfhydryl, tryptophanyl and arginyl were essential residues for enzyme catalysis. The purified β-glucanase was immobilized on carrageenan and chitosan with appreciable yield. However, the cross-linked enzyme exhibited superior activity along with remarkable improved thermostability and operational stability. Remarkably, the application of the above biocatalyst proved to be a promising candidate in liberating the associate lignocellulosic reducing sugars, which was utilized for ethanol production by Saccharomyces cerevisiae. The purified β-glucanase revealed an inhibitory effect on the growth of two tested phytopathogens Fusarium oxysporum and Penicillium digitatum.
Collapse
Affiliation(s)
- Hamed M El-Shora
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Reyad M El-Sharkawy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Aiah M Khateb
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Doaa B Darwish
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
6
|
Qamar SA, Qamar M, Bilal M, Bharagava RN, Ferreira LFR, Sher F, Iqbal HMN. Cellulose-deconstruction potential of nano-biocatalytic systems: A strategic drive from designing to sustainable applications of immobilized cellulases. Int J Biol Macromol 2021; 185:1-19. [PMID: 34146557 DOI: 10.1016/j.ijbiomac.2021.06.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
Nanostructured materials along with an added value of polymers-based support carriers have gained high interest and considered ideal for enzyme immobilization. The recently emerged nanoscience interface in the form of nanostructured materials combined with immobilized-enzyme-based bio-catalysis has now become research and development frontiers in advance and applied bio-catalysis engineering. With the involvement of nanoscience, various polymers have been thoroughly developed and exploited to nanostructured engineer constructs as ideal support carriers/matrices. Such nanotechnologically engineered support carriers/matrix possesses unique structural, physicochemical, and functional attributes which equilibrate principal factors and strengthen the biocatalysts efficacy for multipurpose applications. In addition, nano-supported catalysts are potential alternatives that can outstrip several limitations of conventional biocatalysts, such as reduced catalytic efficacy and turnover, low mass transfer efficiency, instability during the reaction, and most importantly, partial, or complete inhibition/deactivation. In this context, engineering robust and highly efficient biocatalysts is an industrially relevant prerequisite. This review comprehensively covered various biopolymers and nanostructured materials, including silica, hybrid nanoflower, nanotubes or nanofibers, nanomembranes, graphene oxide nanoparticles, metal-oxide frameworks, and magnetic nanoparticles as robust matrices for cellulase immobilization. The work is further enriched by spotlighting applied and industrially relevant considerations of nano-immobilized cellulases. For instance, owing to the cellulose-deconstruction features of nano-immobilized cellulases, the applications like lignocellulosic biomass conversion into industrially useful products or biofuels, improved paper sheet density and pulp beat in paper and pulp industry, fruit juice clarification in food industry are evident examples of cellulases, thereof are discussed in this work.
Collapse
Affiliation(s)
- Sarmad Ahmad Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Mahpara Qamar
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ram Naresh Bharagava
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025, U.P., India
| | - Luiz Fernando Romanholo Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), Tiradentes University, Farolândia, Aracaju, SE 49032-490, Brazil; Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
7
|
Steudler S, Ayubi MM, Hilpmann G, Lange R, Werner A, Walther T, Bley T. Immobilization of xylanases on metallic hollow spheres for biochemical catalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Mani P, Fidal VT, Keshavarz T, Chandra TS, Kyazze G. Laccase Immobilization Strategies for Application as a Cathode Catalyst in Microbial Fuel Cells for Azo Dye Decolourization. Front Microbiol 2021; 11:620075. [PMID: 33537019 PMCID: PMC7847978 DOI: 10.3389/fmicb.2020.620075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 01/31/2023] Open
Abstract
Enzymatic biocathodes have the potential to replace platinum as an expensive catalyst for the oxygen reduction reaction in microbial fuel cells (MFCs). However, enzymes are fragile and prone to loss of activity with time. This could be circumvented by using suitable immobilization techniques to maintain the activity and increase longevity of the enzyme. In the present study, laccase from Trametes versicolor was immobilized using three different approaches, i.e., crosslinking with electropolymerized polyaniline (PANI), entrapment in copper alginate beads (Cu-Alg), and encapsulation in Nafion micelles (Nafion), in the absence of redox mediators. These laccase systems were employed in cathode chambers of MFCs for decolourization of Acid orange 7 (AO7) dye. The biocatalyst in the anode chamber was Shewanella oneidensis MR-1 in each case. The enzyme in the immobilized states was compared with freely suspended enzyme with respect to dye decolourization at the cathode, enzyme activity retention, power production, and reusability. PANI laccase showed the highest stability and activity, producing a power density of 38 ± 1.7 mW m−2 compared to 25.6 ± 2.1 mW m−2 for Nafion laccase, 14.7 ± 1.04 mW m−2 for Cu-Alg laccase, and 28 ± 0.98 mW m−2 for the freely suspended enzyme. There was 81% enzyme activity retained after 1 cycle (5 days) for PANI laccase compared to 69% for Nafion and 61.5% activity for Cu-alginate laccase and 23.8% activity retention for the freely suspended laccase compared to initial activity. The dye decolourization was highest for freely suspended enzyme with over 85% decolourization whereas for PANI it was 75.6%, Nafion 73%, and 81% Cu-alginate systems, respectively. All the immobilized laccase systems were reusable for two more cycles. The current study explores the potential of laccase immobilized biocathode for dye decolourization in a microbial fuel cell.
Collapse
Affiliation(s)
| | - V T Fidal
- Department of Biotechnology, Indian Institute of Technology (Madras), Chennai, India
| | - Taj Keshavarz
- School of Life Sciences, University of Westminster, London, United Kingdom
| | - T S Chandra
- Department of Biotechnology, Indian Institute of Technology (Madras), Chennai, India
| | - Godfrey Kyazze
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
9
|
Nawaz MA, Pervez S, Rehman HU, Jamal M, Jan T, Hazrat A, Attaullah M, Khan W, Qader SAU. Utilization of different polymers for the improvement of catalytic properties and recycling efficiency of bacterial maltase. Int J Biol Macromol 2020; 163:1344-1352. [PMID: 32698068 DOI: 10.1016/j.ijbiomac.2020.07.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022]
Abstract
Current study deals with the comparative study related to immobilization of maltase using synthetic (polyacrylamide) and non-synthetic (calcium alginate, agar-agar and agarose) polymers via entrapment technique. Polyacrylamide beads were formed by cross-linking of monomers, agar-agar and agarose through solidification while alginate beads were prepared by simple gelation. Results showed that the efficiency of enzyme significantly improved after immobilization and among all tested supports agar-agar was found to be the most promising and biocompatible for maltase in terms of immobilization yield (82.77%). The catalytic behavior of maltase was slightly shifted in terms of reaction time (free enzyme, agarose and polyacrylamide: 5.0 min; agar-agar and alginate: 10.0 min), pH (free enzyme, alginate and polyacrylamide: 6.5; agar-agar, agarose: 7.0) and temperature (free enzyme: 45 °C; alginate: 50 °C; polyacrylamide: 55 °C; agarose: 60 °C; agar-agar: 65 °C). Stability profile of immobilized maltase also revealed that all the supports utilized have significantly enhanced the activity of maltase at higher temperatures then its free counterpart. However, recycling data showed that agar-agar entrapped maltase retained 20.0% of its initial activity even after 10 cycles followed by agarose (10.0%) while polyacrylamide and alginate showed no activity after 8 and 6 cycles respectively.
Collapse
Affiliation(s)
- Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan; The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Sidra Pervez
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan.
| | - Haneef Ur Rehman
- Department of Chemistry, University of Turbat, Kech, Balochistan, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University Mardan, KPK, Pakistan
| | - Tour Jan
- Department of Botany, University of Malakand, Chakdara, KPK, Pakistan
| | - Ali Hazrat
- Department of Botany, University of Malakand, Chakdara, KPK, Pakistan
| | | | - Wali Khan
- Department of Zoology, University of Malakand, Chakdara, KPK, Pakistan
| | - Shah Ali Ul Qader
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
10
|
Papadopoulou A, Zarafeta D, Galanopoulou AP, Stamatis H. Enhanced Catalytic Performance of Trichoderma reesei Cellulase Immobilized on Magnetic Hierarchical Porous Carbon Nanoparticles. Protein J 2020; 38:640-648. [PMID: 31549278 DOI: 10.1007/s10930-019-09869-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellulase from Trichoderma reesei was immobilized by covalent or non-covalent binding onto magnetic hierarchical porous carbon (MHPC) nanomaterials. The immobilization yield and the enzyme activity were higher when covalent immobilization approach was followed. The covalent immobilization approach leads to higher immobilization yield (up to 96%) and enzyme activity (up to 1.35 U mg-1) compared to the non-covalent cellulase binding. The overall results showed that the thermal, storage and operational stability of the immobilized cellulase was considerably improved compared to the free enzyme. The immobilized cellulose catalyzed the hydrolysis of microcrystalline cellulose up to 6 consecutive successive reaction cycles, with a total operation time of 144 h at 50 °C. The half-life time of the immobilized enzyme in deep eutectic solvents-based media was up to threefold higher compared to the soluble enzyme. The increased pH and temperature tolerance of the immobilized cellulase, as well as the increased operational stability in aqueous and deep eutectic solvents-based media indicate that the use of MHPCs as immobilization nanosupport could expand the catalytic performance of cellulolytic enzymes in various reaction conditions.
Collapse
Affiliation(s)
- Athena Papadopoulou
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece
| | - Dimitra Zarafeta
- Institute of Chemical Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635, Athens, Greece
| | | | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
11
|
Irfan M, Kiran J, Ayubi S, Ullah A, Rana QUA, Khan S, Hasan F, Badshah M, Shah AA. Immobilization of β-1,4-xylanase isolated from Bacillus licheniformis
S3. J Basic Microbiol 2020; 60:600-612. [DOI: 10.1002/jobm.202000077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/20/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology; College of Dentistry, University of Florida; Gainesville Florida
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Jawairia Kiran
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Salahuddin Ayubi
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Ameen Ullah
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Qurrat Ul Ain Rana
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Fariha Hasan
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Aamer A. Shah
- Department of Microbiology, Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| |
Collapse
|
12
|
Shivudu G, Chandraraj K, Selvam P. Production of xylooligosaccharides from xylan catalyzed by endo-1,4-β-D-xylanase-immobilized nanoscale carbon, silica and zirconia matrices. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Shivudu G, Khan S, Chandraraj K, Selvam P. Immobilization of Recombinant Endo‐1,4‐β‐xylanase on Ordered Mesoporous Matrices for Xylooligosaccharides Production. ChemistrySelect 2019. [DOI: 10.1002/slct.201901593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Godhulayyagari Shivudu
- National Centre for Catalysis Research and Department of BiotechnologyIndian Institute of Technology-Madras Chennai- 600036 India
| | - Sourav Khan
- National Centre for Catalysis Research and Department of ChemistryIndian Institute of Technology-Madras Chennai- 600036 India
| | - Krishnan Chandraraj
- National Centre for Catalysis Research and Department of BiotechnologyIndian Institute of Technology-Madras Chennai- 600036 India
| | - Parasuraman Selvam
- National Centre for Catalysis Research and Department of ChemistryIndian Institute of Technology-Madras Chennai- 600036 India
- School of Chemical Engineering and Analytical ScienceThe University of Manchester, Manchester M13 9PL United Kingdom
- Department of Chemical and Process EngineeringUniversity of Surrey, Guildford, Surrey GU2 7XH United Kingdom
| |
Collapse
|
14
|
Immobilization of enological pectinase in calcium alginate hydrogels: A potential biocatalyst for winemaking. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101091] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M. Enzyme Immobilization on Chitin and Chitosan-Based Supports for Biotechnological Applications. SUSTAINABLE AGRICULTURE REVIEWS 35 2019. [DOI: 10.1007/978-3-030-16538-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Sattar H, Aman A, Javed U, Ul Qader SA. Polyacrylamide beads: Polymer entrapment increases the catalytic efficiency and thermal stability of protease. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Kumar S, Haq I, Prakash J, Raj A. Improved enzyme properties upon glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus licheniformis. Int J Biol Macromol 2017; 98:24-33. [DOI: 10.1016/j.ijbiomac.2017.01.104] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 12/24/2022]
|
18
|
Silva DF, Carvalho AFA, Shinya TY, Mazali GS, Herculano RD, Oliva-Neto P. Recycle of Immobilized Endocellulases in Different Conditions for Cellulose Hydrolysis. Enzyme Res 2017; 2017:4362704. [PMID: 28465836 PMCID: PMC5390571 DOI: 10.1155/2017/4362704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/25/2016] [Accepted: 02/14/2017] [Indexed: 11/28/2022] Open
Abstract
The immobilization of cellulases could be an economical alternative for cost reduction of enzyme application. The derivatives obtained in the immobilization derivatives were evaluated in recycles of paper filter hydrolysis. The immobilization process showed that the enzyme recycles were influenced by the shape (drop or sheet) and type of the mixture. The enzyme was recycled 28 times for sheets E' and 13 times for drops B'. The derivative E' showed the highest stability in the recycle obtaining 0.05 FPU/g, RA of 10%, and FPU Yield of 1.64 times, higher than FPU spent or Net FPU Yield of 5.3 times, saving more active enzymes. The derivative B showed stability in recycles reaching 0.15 FPU/g of derivative, yield of Recovered Activity (RA) of 25%, and FPU Yield of 1.57 times, higher than FPU spent on immobilization or Net PFU Yield of 2.81 times. The latex increased stability and resistance of the drops but did not improve the FPU/gram of derivative.
Collapse
Affiliation(s)
- D. F. Silva
- Biological Science Department, Universidade Estadual Paulista (UNESP), Avenida Dom Antônio, 2100 Bairro, Parque Universitário, 19806-900 Assis, SP, Brazil
| | - A. F. A. Carvalho
- Biological Science Department, Universidade Estadual Paulista (UNESP), Avenida Dom Antônio, 2100 Bairro, Parque Universitário, 19806-900 Assis, SP, Brazil
| | - T. Y. Shinya
- Biological Science Department, Universidade Estadual Paulista (UNESP), Avenida Dom Antônio, 2100 Bairro, Parque Universitário, 19806-900 Assis, SP, Brazil
| | - G. S. Mazali
- Biological Science Department, Universidade Estadual Paulista (UNESP), Avenida Dom Antônio, 2100 Bairro, Parque Universitário, 19806-900 Assis, SP, Brazil
| | - R. D. Herculano
- Bioprocess & Biotechnology Department, Universidade Estadual Paulista (UNESP), Rod. Araraquara-Jaú Km 1 Bairro, Machados, 14800-901 Araraquara, SP, Brazil
| | - P. Oliva-Neto
- Biological Science Department, Universidade Estadual Paulista (UNESP), Avenida Dom Antônio, 2100 Bairro, Parque Universitário, 19806-900 Assis, SP, Brazil
| |
Collapse
|
19
|
Sahare P, Ayala M, Vazquez-Duhalt R, Pal U, Loni A, Canham LT, Osorio I, Agarwal V. Enhancement of Peroxidase Stability Against Oxidative Self-Inactivation by Co-immobilization with a Redox-Active Protein in Mesoporous Silicon and Silica Microparticles. NANOSCALE RESEARCH LETTERS 2016; 11:417. [PMID: 27650291 PMCID: PMC5030200 DOI: 10.1186/s11671-016-1605-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
The study of the stability enhancement of a peroxidase immobilized onto mesoporous silicon/silica microparticles is presented. Peroxidases tend to get inactivated in the presence of hydrogen peroxide, their essential co-substrate, following an auto-inactivation mechanism. In order to minimize this inactivation, a second protein was co-immobilized to act as an electron acceptor and thus increase the stability against self-oxidation of peroxidase. Two heme proteins were immobilized into the microparticles: a fungal commercial peroxidase and cytochrome c from equine heart. Two types of biocatalysts were prepared: one with only covalently immobilized peroxidase (one-protein system) and another based on covalent co-immobilization of peroxidase and cytochrome c (two-protein system), both immobilized by using carbodiimide chemistry. The amount of immobilized protein was estimated spectrophotometrically, and the characterization of the biocatalyst support matrix was performed using Brunauer-Emmett-Teller (BET), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared (FTIR) analyses. Stability studies show that co-immobilization with the two-protein system enhances the oxidative stability of peroxidase almost four times with respect to the one-protein system. Thermal stability analysis shows that the immobilization of peroxidase in derivatized porous silicon microparticles does not protect the protein from thermal denaturation, whereas biogenic silica microparticles confer significant thermal stabilization.
Collapse
Affiliation(s)
- P. Sahare
- Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autónoma del Estado de México, Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209 Mexico
| | - M. Ayala
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, Cuernavaca, 62210 Morelos Mexico
| | - R. Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de Mexico, Km. 107, Carretera Tijuana-Ensenada, Apdo. Postal 14, CP 22800 Ensenada, Baja California Mexico
| | - U. Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - A. Loni
- pSiMedica Ltd, Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire WR14 3SZ UK
| | - L. T. Canham
- pSiMedica Ltd, Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire WR14 3SZ UK
| | - I. Osorio
- Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - V. Agarwal
- Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autónoma del Estado de México, Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209 Mexico
| |
Collapse
|
20
|
An overview of holocellulose-degrading enzyme immobilization for use in bioethanol production. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Nawaz MA, Aman A, Rehman HU, Bibi Z, Ansari A, Islam Z, Khan IA, Qader SAU. Polyacrylamide Gel-Entrapped Maltase: An Excellent Design of Using Maltase in Continuous Industrial Processes. Appl Biochem Biotechnol 2016; 179:383-97. [DOI: 10.1007/s12010-016-2001-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/27/2016] [Indexed: 11/29/2022]
|
22
|
Immobilization and stabilization of an endoxylanase from Bacillus subtilis (XynA) for xylooligosaccharides (XOs) production. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Bibi Z, Qader SAU, Aman A. Calcium alginate matrix increases the stability and recycling capability of immobilized endo-β-1,4-xylanase from Geobacillus stearothermophilus KIBGE-IB29. Extremophiles 2015; 19:819-27. [PMID: 26001519 DOI: 10.1007/s00792-015-0757-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/10/2015] [Indexed: 12/21/2022]
Abstract
Exploration of microbial pool from extremely diversified ecosystem is significantly important for various industrial applications. Bacterial communities from extreme habitats including volcanic vents, hot springs, and industrial sectors are eagerly explored for the isolation of thermophiles. Geobacillus stearothermophilus KIBGE-IB29, isolated from blast furnace site of a steel processing industry, is capable of producing thermostable endo-β-1,4-xylanase. In the current study, this enzyme was immobilized within calcium alginate beads using entrapment technique. Amalgamation of sodium alginate (40.0 gL(-1)) and calcium chloride (0.4 M) was used for the formation of immobilized beads. It was observed that temperature (50 °C) and pH (7.0) optima of immobilized enzyme remained same, but enzyme-substrate reaction time increased from 5.0 to 30.0 min as compared to free enzyme. Diffusion limit of high molecular weight xylan (corncob) caused a decline in V max of immobilized enzyme from 4773 to 203.7 U min(-1), whereas K m value increased from 0.5074 to 0.5722 mg ml(-1) with reference to free enzyme. Immobilized endo-β-1,4-xylanase showed its stability even at high temperatures as compared to free enzyme and retained 18 and 9 % residual activity at 70 and 80 °C, respectively. Immobilized enzyme also exhibited sufficient recycling efficiency up to five reaction cycles which indicated that this enzyme can be a plausible candidate in paper and pulp industry.
Collapse
Affiliation(s)
- Zainab Bibi
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| | | | | |
Collapse
|
24
|
Bibi Z, Shahid F, Ul Qader SA, Aman A. Agar–agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan. Int J Biol Macromol 2015; 75:121-7. [DOI: 10.1016/j.ijbiomac.2014.12.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
|
25
|
Ramirez HL, Gómez Brizuela L, Úbeda Iranzo J, Arevalo-Villena M, Briones Pérez AI. Pectinase Immobilization on a Chitosan-Coated Chitin Support. J FOOD PROCESS ENG 2015. [DOI: 10.1111/jfpe.12203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Juan Úbeda Iranzo
- Department of Analytical Chemistry and Food Technology; University of Castilla La Mancha; Av. Camilo Jose Cela, 10 13071 Ciudad Real Spain
| | - María Arevalo-Villena
- Department of Analytical Chemistry and Food Technology; University of Castilla La Mancha; Av. Camilo Jose Cela, 10 13071 Ciudad Real Spain
| | - Ana Isabel Briones Pérez
- Department of Analytical Chemistry and Food Technology; University of Castilla La Mancha; Av. Camilo Jose Cela, 10 13071 Ciudad Real Spain
| |
Collapse
|