1
|
The role of propeptide-mediated autoinhibition and intermolecular chaperone in the maturation of cognate catalytic domain in leucine aminopeptidase. J Struct Biol 2021; 213:107741. [PMID: 33989771 DOI: 10.1016/j.jsb.2021.107741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022]
Abstract
Leucyl aminopeptidase A from Aspergillus oryzae RIB40 (AO-LapA) is an exo-acting peptidase, widely utilised in food debittering applications. AO-LapA is secreted as a zymogen by the host and requires enzymatic cleavage of the autoinhibitory propeptide to reveal its full activity. Scarcity of structural data of zymogen aminopeptidases hampers a better understanding of the details of their molecular action of autoinhibition and how this might be utilised to improve the properties of such enzymes by recombinant methods for more effective bioprocessing. To address this gap in the literature, herein we report high-resolution crystal structures of recombinantly expressed AO-LapA precursor (AO-proLapA), mature LapA (AO-mLapA) and AO-mLapA complexed with reaction product l-leucine (AO-mLapA-Leu), all purified from Pichia pastoris culture supernatant. Our structures reveal a plausible molecular mechanism of LapA catalytic domain autoinhibition by propeptide and highlights the role of intramolecular chaperone (IMC). Our data suggest an absolute requirement for IMC in the maturation of cognate catalytic domain of AO-LapA. This observation is reinforced by our expression and refolding data of catalytic domain only (AO-refLapA) from Escherichia coli inclusion bodies, revealing a limited active conformation. Our work supports the notion that known synthetic aminopeptidase inhibitors and substrates mimic key polar contacts between propeptide and corresponding catalytic domain, demonstrated in our AO-proLapA zymogen crystal structure. Furthermore, understanding the atomic details of the autoinhibitory mechanism of cognate catalytic domains by native propeptides has wider reaching implications toward synthetic production of more effective inhibitors of bimetallic aminopeptidases and other dizinc enzymes that share an analogous reaction mechanism.
Collapse
|
2
|
Rege NK, Liu M, Dhayalan B, Chen YS, Smith NA, Rahimi L, Sun J, Guo H, Yang Y, Haataja L, Phillips NFB, Whittaker J, Smith BJ, Arvan P, Ismail-Beigi F, Weiss MA. "Register-shift" insulin analogs uncover constraints of proteotoxicity in protein evolution. J Biol Chem 2020; 295:3080-3098. [PMID: 32005662 DOI: 10.1074/jbc.ra119.011389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Globular protein sequences encode not only functional structures (the native state) but also protein foldability, i.e. a conformational search that is both efficient and robustly minimizes misfolding. Studies of mutations associated with toxic misfolding have yielded insights into molecular determinants of protein foldability. Of particular interest are residues that are conserved yet dispensable in the native state. Here, we exploited the mutant proinsulin syndrome (a major cause of permanent neonatal-onset diabetes mellitus) to investigate whether toxic misfolding poses an evolutionary constraint. Our experiments focused on an invariant aromatic motif (PheB24-PheB25-TyrB26) with complementary roles in native self-assembly and receptor binding. A novel class of mutations provided evidence that insulin can bind to the insulin receptor (IR) in two different modes, distinguished by a "register shift" in this motif, as visualized by molecular dynamics (MD) simulations. Register-shift variants are active but defective in cellular foldability and exquisitely susceptible to fibrillation in vitro Indeed, expression of the corresponding proinsulin variant induced endoplasmic reticulum stress, a general feature of the mutant proinsulin syndrome. Although not present among vertebrate insulin and insulin-like sequences, a prototypical variant ([GlyB24]insulin) was as potent as WT insulin in a rat model of diabetes. Although in MD simulations the shifted register of receptor engagement is compatible with the structure and allosteric reorganization of the IR-signaling complex, our results suggest that this binding mode is associated with toxic misfolding and so is disallowed in evolution. The implicit threat of proteotoxicity limits sequence variation among vertebrate insulins and insulin-like growth factors.
Collapse
Affiliation(s)
- Nischay K Rege
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ming Liu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, Heping District, 300052 China
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Leili Rahimi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jinhong Sun
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia
| | - Huan Guo
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia
| | - Yanwu Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia
| | - Nelson F B Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jonathan Whittaker
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia
| | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
3
|
Tang H, Zhang J, Shi K, Aihara H, Du G. Insight into subtilisin E-S7 cleavage pattern based on crystal structure and hydrolysates peptide analysis. Biochem Biophys Res Commun 2019; 512:623-628. [PMID: 30914195 PMCID: PMC6541920 DOI: 10.1016/j.bbrc.2019.03.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023]
Abstract
The X-ray crystallographic structure of the mature form of subtilisin E-S7 (SES7) at 1.90 Å resolution is reported here. Structural comparisons between the previously reported propeptide-subtilisin E complex (1SCJ) and our mature form subtilisin E-S7 (6O44) provide insight into active site adjustments involved in catalysis and specificity. To further investigate the protease substrate selectivity mechanism, we used SES7 to hydrolyze skim milk and analyzed the hydrolysates by LC-MS for peptide identification. The cleavage pattern suggests a high preference for proline at substrate P2 position. The results based on the peptide analysis are consistent with our structural observations, which is instrumental in future protein engineering by rational design. Furthermore, the ACE-inhibitor and NLN-inhibitor activity of the hydrolysates were determined to assess the utility of SES7 for further industrial applications; IC50-ACE = 67 ± 0.92 μg/mL and IC50-NLN = 263 ± 13 μg/mL.
Collapse
Affiliation(s)
- Heng Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, Chi
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, Chi
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA.,Corresponding authors: Hideki Aihara, ., Guocheng Du,
| | - Guocheng Du
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, Chi,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China,Corresponding authors: Hideki Aihara, ., Guocheng Du,
| |
Collapse
|
4
|
Williamson DM, Elferich J, Shinde U. Mechanism of Fine-tuning pH Sensors in Proprotein Convertases: IDENTIFICATION OF A pH-SENSING HISTIDINE PAIR IN THE PROPEPTIDE OF PROPROTEIN CONVERTASE 1/3. J Biol Chem 2015; 290:23214-25. [PMID: 26229104 DOI: 10.1074/jbc.m115.665430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 12/15/2022] Open
Abstract
The propeptides of proprotein convertases (PCs) regulate activation of cognate protease domains by sensing pH of their organellar compartments as they transit the secretory pathway. Earlier experimental work identified a conserved histidine-encoded pH sensor within the propeptide of the canonical PC, furin. To date, whether protonation of this conserved histidine is solely responsible for PC activation has remained unclear because of the observation that various PC paralogues are activated at different organellar pH values. To ascertain additional determinants of PC activation, we analyzed PC1/3, a paralogue of furin that is activated at a pH of ∼5.4. Using biophysical, biochemical, and cell-based methods, we mimicked the protonation status of various histidines within the propeptide of PC1/3 and examined how such alterations can modulate pH-dependent protease activation. Our results indicate that whereas the conserved histidine plays a crucial role in pH sensing and activation of this protease an additional histidine acts as a "gatekeeper" that fine-tunes the sensitivity of the PC1/3 propeptide to facilitate the release inhibition at higher proton concentrations when compared with furin. Coupled with earlier analyses that highlighted the enrichment of the amino acid histidine within propeptides of secreted eukaryotic proteases, our work elucidates how secreted proteases have evolved to exploit the pH of the secretory pathway by altering the spatial juxtaposition of titratable groups to regulate their activity in a spatiotemporal fashion.
Collapse
Affiliation(s)
- Danielle M Williamson
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Johannes Elferich
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| | - Ujwal Shinde
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|