1
|
Glotov A, Vutolkina A, Pimerzin A, Vinokurov V, Lvov Y. Clay nanotube-metal core/shell catalysts for hydroprocesses. Chem Soc Rev 2021; 50:9240-9277. [PMID: 34241609 DOI: 10.1039/d1cs00502b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Catalytic hydroprocesses play a significant role in oil refining and petrochemistry. The tailored design of new metal nanosystems and optimization of their support, composition, and structure is a prospective strategy for enhancing the efficiency of catalysts. Mesoporous support impacts the active component by binding it to the surface, which leads to the formation of tiny highly dispersed catalytic particles stabilized from aggregation and with minimized leaching. The structural and acidic properties of the support are crucial and determine the size and dispersion of the active metal phase. Currently, research efforts are shifted toward the design of nanoscale porous materials, where homogeneous catalysts are displaced by heterogeneous. Ceramic materials, such as 50 nm diameter natural halloysite nanotubes, are of special interest for this. Much attention to halloysite clay is due to its tubular structure with a hollow 10-15 nm diameter internal cavity, textural characteristics, and different chemical compositions of the outer/inner surfaces, allowing selective nanotube modification. Loading halloysite with metal particles or placing them outside the tubes provides stable and efficient mesocatalysts. The low cost of this abundant nanoclay makes it a good choice for the scaled-up architectural design of core-shell catalysts, containing active metal sites (Au, Ag, Pt, Ru, Co, Mo, Fe2O3, CdS, CdZnS, Cu-Ni) located inside or outside the tubular template. These alumosilicate nanotubes are environment-friendly and are available in thousands of tons. Herein, we summarized the advances of halloysite-based composite materials for hydroprocesses, focusing on the selective binding of metal particles. We analyze the tubes' morphology adjustments and size selection, the physicochemical properties of pristine and modified halloysite (e.g., acid-etched or silanized), the methods of metal clusters formation, and their localization. We indicate prospective routes for the architectural design of stable and efficient nanocatalysts based on this safe and natural clay material.
Collapse
Affiliation(s)
- Aleksandr Glotov
- Gubkin Russian State University of Oil and Gas (NRU), 65 Leninsky Prospekt, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
2
|
Pudukudy M, Jia Q, Dong Y, Yue Z, Shan S. Magnetically separable and reusable rGO/Fe3O4 nanocomposites for the selective liquid phase oxidation of cyclohexene to 1,2-cyclohexane diol. RSC Adv 2019; 9:32517-32534. [PMID: 35529707 PMCID: PMC9072983 DOI: 10.1039/c9ra04685b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/28/2019] [Indexed: 12/02/2022] Open
Abstract
A series of magnetically separable rGO/Fe3O4 nanocomposites with various amounts of graphene oxide were successfully prepared by a simple ultrasonication assisted precipitation combined with a solvothermal method and their catalytic activity was evaluated for the selective liquid phase oxidation of cyclohexene using hydrogen peroxide as a green oxidant. The prepared materials were characterized using XRD, FTIR, FESEM, TEM, HRTEM, BET/BJH, XPS and VSM analysis. The presence of well crystallized Fe3O4 as the active iron species was seen in the crystal studies of the nanocomposites. The electron microscopy analysis indicated the fine surface dispersion of spherical Fe3O4 nanoparticles on the thin surface layers of partially-reduced graphene oxide (rGO) nanosheets. The decoration of Fe3O4 nanospheres on thin rGO layers was clearly observable in all of the nanocomposites. The XPS analysis was performed to evaluate the chemical states of the elements present in the samples. The surface area of the nanocomposites was increased significantly by increasing the amount of GO and the pore structures were effectively tuned by the amount of rGO in the nanocomposites. The magnetic saturation values of the nanocomposites were found to be sufficient for their efficient magnetic separation. The catalytic activity results show that the cyclohexene conversion reached 75.3% with a highest 1,2-cyclohexane diol selectivity of 81% over 5% rGO incorporated nanocomposite using H2O2 as the oxidant and acetonitrile as the solvent at 70 °C for 6 h. The reaction conditions were further optimized by changing the variables and a possible reaction mechanism was proposed. The enhanced catalytic activity of the nanocomposites for cyclohexene oxidation could be attributed to the fast accomplishment of the Fe2+/Fe3+ redox cycle in the composites due the sacrificial role of rGO and its synergistic effect with Fe3O4, originating from the conjugated network of π-electrons in its surface structure. The rapid and easy separation of the magnetic nanocomposites from the reaction mixture using an external magnet makes the present catalysts highly efficient for the reaction. Moreover, the catalyst retained its activity for five repeated runs without any drastic drop in the reactant conversion and product selectivity. A series of magnetically-separable and reusable rGO/Fe3O4 nanocomposites were successfully synthesized for the selective liquid-phase oxidation of cyclohexene to 1,2-cyclohexane-diol.![]()
Collapse
Affiliation(s)
- Manoj Pudukudy
- Faculty of Chemical Engineering
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Qingming Jia
- Faculty of Chemical Engineering
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Yanan Dong
- Faculty of Chemical Engineering
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Zhongxiao Yue
- Faculty of Chemical Engineering
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| | - Shaoyun Shan
- Faculty of Chemical Engineering
- Kunming University of Science and Technology
- Kunming
- People's Republic of China
| |
Collapse
|
3
|
Vinokurov VA, Stavitskaya AV, Glotov AP, Novikov AA, Zolotukhina AV, Kotelev MS, Gushchin PA, Ivanov EV, Darrat Y, Lvov YM. Nanoparticles Formed onto/into Halloysite Clay Tubules: Architectural Synthesis and Applications. CHEM REC 2018; 18:858-867. [PMID: 29314509 DOI: 10.1002/tcr.201700089] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/15/2017] [Indexed: 11/08/2022]
Abstract
Nanoparticles, being objects with high surface area are prone to agglomeration. Immobilization onto solid supports is a promising method to increase their stability and it allows for scalable industrial applications, such as metal nanoparticles adsorbed to mesoporous ceramic carriers. Tubular nanoclay - halloysite - can be an efficient solid support, enabling the fast and practical architectural (inside / outside) synthesis of stable metal nanoparticles. The obtained halloysite-nanoparticle composites can be employed as advanced catalysts, ion-conducting membrane modifiers, inorganic pigments, and optical markers for biomedical studies. Here, we discuss the possibilities to synthesize halloysite decorated with metal, metal chalcogenide, and carbon nanoparticles, and to use these materials in various fields, especially in catalysis and petroleum refinery.
Collapse
Affiliation(s)
- Vladimir A Vinokurov
- Department of Physical and Colloid Chemistry, Gubkin University, 65-1, Leninsky prospect, Moscow, Russia, 119991
| | - Anna V Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin University, 65-1, Leninsky prospect, Moscow, Russia, 119991
| | - Aleksandr P Glotov
- Department of Physical and Colloid Chemistry, Gubkin University, 65-1, Leninsky prospect, Moscow, Russia, 119991
| | - Andrei A Novikov
- Department of Physical and Colloid Chemistry, Gubkin University, 65-1, Leninsky prospect, Moscow, Russia, 119991
| | - Anna V Zolotukhina
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow, Russia, 119991
| | - Mikhail S Kotelev
- Department of Physical and Colloid Chemistry, Gubkin University, 65-1, Leninsky prospect, Moscow, Russia, 119991
| | - Pawel A Gushchin
- Department of Physical and Colloid Chemistry, Gubkin University, 65-1, Leninsky prospect, Moscow, Russia, 119991
| | - Evgenii V Ivanov
- Department of Physical and Colloid Chemistry, Gubkin University, 65-1, Leninsky prospect, Moscow, Russia, 119991
| | - Yusuf Darrat
- Institute for Micromanufacturing, Louisiana Tech University, 911 Hergot Ave., Ruston, LA 71272, USA
| | - Yuri M Lvov
- Department of Physical and Colloid Chemistry, Gubkin University, 65-1, Leninsky prospect, Moscow, Russia, 119991.,Institute for Micromanufacturing, Louisiana Tech University, 911 Hergot Ave., Ruston, LA 71272, USA
| |
Collapse
|
4
|
Jameel U, Zhu M, Chen X, Chen H, Iqbal N, Tong Z, Timayo SJ. Novel Gallium Polyoxometalate/Nano-Gold Hybrid Material Supported on Nano-sized Silica for Mild Cyclohexene Oxidation Using Molecular Oxygen. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Umsa Jameel
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Mingqiao Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Xinzhi Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Hengquan Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Nousheen Iqbal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering; Donghua University; Shanghai 201620 China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering; Guangxi University; Nanning 530004 China
| | - Satmon John Timayo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
6
|
Najafpour MM, Amini E. Nano-sized Mn oxides on halloysite or high surface area montmorillonite as efficient catalysts for water oxidation with cerium(iv) ammonium nitrate: support from natural sources. Dalton Trans 2015; 44:15441-9. [DOI: 10.1039/c5dt02336j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We used halloysite, a nano-sized natural mineral and high surface area montmorillonite as supports for nano-sized Mn oxides to synthesize efficient water-oxidising catalysts.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
- Center of Climate Change and Global Warming
| | - Emad Amini
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| |
Collapse
|