1
|
Bharathi Rathinam R, Tripathi G, Das BK, Jain R, Acharya A. Comparative analysis of gut microbiome in Pangasionodon hypopthalmus and Labeo catla during health and disease. Int Microbiol 2024; 27:1557-1571. [PMID: 38483744 DOI: 10.1007/s10123-024-00494-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 03/01/2024] [Indexed: 10/05/2024]
Abstract
The present study was conducted to study the composition of gut microbiome in the advanced fingerling and fingerling stage of striped pangasius catfish and catla during healthy and diseased conditions. Healthy pangasius and catla fishes were obtained from commercial farms and injected with the LD50 dose of A. hydrophila. The intestinal samples from the control and injected group were collected and pooled for 16 s metagenomic analysis. Community analysis was performed by targeting the 16 s rRNA gene to explore and compare the gut microbiota composition of these fishes. The operational taxonomic units (OTUs) consisted of four major phyla: Bacteroidia, Proteobacteria, Firmicutes, and Actinobacteria. Alpha and beta diversity indices were carried out to understand the diversity of microbes within and between a sample. While comparing the advanced fingerling and fingerling stage gut microbiome of Pangasius catfish, the dominance of Proteobacteria was found in fingerlings, whereas Firmicutes and Bacteroides were found in advanced fingerlings. In catla, Proteobacteria and Bacteroides were predominant. Taxonomic abundance of the microbiota in control and diseased Pangasius and catla fishes at phylum, class, order, family, genus, and species levels were also depicted. The present study is the first of its kind, and it will help to identify the diversity of novel potential bacterial species involved in disease protection of fishes. It can lead to the development of sustainable prophylactic measures against (re-)emerging bacterial diseases in aquaculture.
Collapse
Affiliation(s)
| | | | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | | | - Arpit Acharya
- ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
2
|
Kimishima A, Nishitomi A, Kondo N, Honma S, Honsho M, Negami S, Maruyama S, Taguchi K, Matsui H, Hanaki H, Chinen T, Usui T, Ogasawara H, Asami Y. Isolation of microorganisms from the feces of Kitasato Yakumo beef cattle as bioactive natural product producers. Biosci Biotechnol Biochem 2024; 88:1242-1246. [PMID: 39025804 DOI: 10.1093/bbb/zbae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
We envisioned that the rumen of Kitasato Yakumo beef cattle would contain unique microorganisms which produce bioactive compounds as their defense response to the external environment. The variety of microorganisms were collected from the feces of Kitasato Yakumo beef cattle. We evaluated the biological activity of the culture broth of the isolated strains, proving the utility of our approach.
Collapse
Affiliation(s)
- Aoi Kimishima
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Atsuka Nishitomi
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Naozumi Kondo
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Sota Honma
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Masako Honsho
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Sota Negami
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Serino Maruyama
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Kazuki Taguchi
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hidehito Matsui
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hideaki Hanaki
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | - Takeo Usui
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideki Ogasawara
- Field Science Center, School of Veterinary Medicine, Kitasato University, Yakumo, Hokkaido, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
3
|
van Bergeijk DA, Augustijn HE, Elsayed SS, Willemse J, Carrión VJ, Du C, Urem M, Grigoreva LV, Cheprasov MY, Grigoriev S, Jansen H, Wintermans B, Budding AE, Spaink HP, Medema MH, van Wezel GP. Taxonomic and metabolic diversity of Actinomycetota isolated from faeces of a 28,000-year-old mammoth. Environ Microbiol 2024; 26:e16589. [PMID: 38356049 DOI: 10.1111/1462-2920.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Ancient environmental samples, including permafrost soils and frozen animal remains, represent an archive with microbial communities that have barely been explored. This yet unexplored microbial world is a genetic resource that may provide us with new evolutionary insights into recent genomic changes, as well as novel metabolic pathways and chemistry. Here, we describe Actinomycetota Micromonospora, Oerskovia, Saccharopolyspora, Sanguibacter and Streptomyces species were successfully revived and their genome sequences resolved. Surprisingly, the genomes of these bacteria from an ancient source show a large phylogenetic distance to known strains and harbour many novel biosynthetic gene clusters that may well represent uncharacterised biosynthetic potential. Metabolic profiles of the strains display the production of known molecules like antimycin, conglobatin and macrotetrolides, but the majority of the mass features could not be dereplicated. Our work provides insights into Actinomycetota isolated from an ancient source, yielding unexplored genomic information that is not yet present in current databases.
Collapse
Affiliation(s)
- Doris A van Bergeijk
- Department of Microbiology, Immunology and Transplantation (Laboratory of Molecular Bacteriology), KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Hannah E Augustijn
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | | | - Joost Willemse
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Victor J Carrión
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbiology, University of Málaga, Málaga, Spain
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Chao Du
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Mia Urem
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | | | | | - Bas Wintermans
- Department of Medical Microbiology, Adrz Hospital, Goes, The Netherlands
| | | | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Marnix H Medema
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| |
Collapse
|
4
|
Mu Y, Yu X, Zheng Z, Liu W, Li G, Liu J, Jiang Y, Han L, Huang X. New metabolites produced by Streptomyces badius isolated from Giraffa camelopardalis feces. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:1150-1157. [PMID: 31429118 DOI: 10.1002/mrc.4934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Xiuyang Yu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Zehui Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Wentao Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Guiding Li
- Yunnan Institute of Microbiology, School of Life Science, Yunnan University, Kunming, 650091, China
| | - Jiang Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Yi Jiang
- Yunnan Institute of Microbiology, School of Life Science, Yunnan University, Kunming, 650091, China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
5
|
Identification and Phylogenetic Profiling of Bacterial Populations in Perna perna L. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
New anti-inflammatory metabolites produced by Streptomyces violaceoruber isolated from Equus burchelli feces. J Antibiot (Tokyo) 2017; 70:991-994. [DOI: 10.1038/ja.2017.75] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/23/2017] [Accepted: 05/27/2017] [Indexed: 01/20/2023]
|
7
|
Ding N, Jiang Y, Han L, Chen X, Ma J, Qu X, Mu Y, Liu J, Li L, Jiang C, Huang X. Bafilomycins and Odoriferous Sesquiterpenoids from Streptomyces albolongus Isolated from Elephas maximus Feces. JOURNAL OF NATURAL PRODUCTS 2016; 79:799-805. [PMID: 26933756 DOI: 10.1021/acs.jnatprod.5b00827] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
From a fermentation broth of Streptomyces albolongus obtained from Elephas maximus feces, nine bafilomycins (1-9) and seven odoriferous sesquiterpenoids (10-16) were isolated. The structures of the new compounds, including three bafilomycins, 19-methoxybafilomycin C1 amide (1), 21-deoxybafilomycin A1 (2), and 21-deoxybafilomycin A2 (3), and two sesquiterpenoid degradation products, (1β,4β,4aβ,8aα)-4,8a-dimethyloctahydronaphthalene-1,4a(2H)-diol (10) and (1β,4β,4aβ,7α,8aα)-4,8a-dimethyloctahydronaphthalene-1,4a,7(2H)-triol (11), were elucidated by comprehensive spectroscopic data analysis. The cytotoxicity activity against four human cancer cell lines and antimicrobial activities against a panel of bacteria and fungi of all compounds isolated were evaluated. Compounds 1, 7, and 8 were cytotoxic, with IC50 values ranging from 0.54 to 5.02 μM. Compounds 2, 7, 8, and 10 showed strong antifungal activity against Candida parapsilosis, with MIC values of 3.13, 1.56, 1.56, and 3.13 μg/mL respectively.
Collapse
Affiliation(s)
- Nan Ding
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
- Laboratory of Metabolic Disease Research and Drug Development, China Medical University , Shenyang 110001, People's Republic of China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University , Kunming 650091, People's Republic of China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Xiu Chen
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Jian Ma
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Xiaodan Qu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Jiang Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| | - Chenglin Jiang
- Yunnan Institute of Microbiology, Yunnan University , Kunming 650091, People's Republic of China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University , Shenyang 110819, People's Republic of China
| |
Collapse
|
8
|
Two New Cyclohexenone Derivatives from a Novel Actinobacterium, Enteractinococcus coprophilus. Chem Nat Compd 2015. [DOI: 10.1007/s10600-015-1495-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Azman AS, Othman I, Velu SS, Chan KG, Lee LH. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity. Front Microbiol 2015; 6:856. [PMID: 26347734 PMCID: PMC4542535 DOI: 10.3389/fmicb.2015.00856] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.
Collapse
Affiliation(s)
- Adzzie-Shazleen Azman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus Selangor, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus Selangor, Malaysia
| | - Saraswati S Velu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus Selangor, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus Selangor, Malaysia
| |
Collapse
|
10
|
Jami M, Ghanbari M, Kneifel W, Domig KJ. Phylogenetic diversity and biological activity of culturable Actinobacteria isolated from freshwater fish gut microbiota. Microbiol Res 2015; 175:6-15. [PMID: 25662514 DOI: 10.1016/j.micres.2015.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/14/2015] [Accepted: 01/18/2015] [Indexed: 01/25/2023]
Abstract
The diversity of Actinobacteria isolated from the gut microbiota of two freshwater fish species namely Schizothorax zarudnyi and Schizocypris altidorsalis was investigated employing classical cultivation techniques, repetitive sequence-based PCR (rep-PCR), partial and full 16S rDNA sequencing followed by phylogenetic analysis. A total of 277 isolates were cultured by applying three different agar media. Based on rep-PCR profile analysis a subset of 33 strains was selected for further phylogenetic investigations, antimicrobial activity testing and diversity analysis of secondary-metabolite biosynthetic genes. The identification based on 16S rRNA gene sequencing revealed that the isolates belong to eight genera distributed among six families. At the family level, 72% of the 277 isolates belong to the family Streptomycetaceae. Among the non-streptomycetes group, the most dominant group could be allocated to the family of Pseudonocardiaceae followed by the members of Micromonosporaceae. Phylogenetic analysis clearly showed that many of the isolates in the genera Streptomyces, Saccharomonospora, Micromonospora, Nocardiopsis, Arthrobacter, Kocuria, Microbacterium and Agromyces formed a single and distinct cluster with the type strains. Notably, there is no report so far about the occurrence of these Actinobacteria in the microbiota of freshwater fish. Of the 33 isolates, all the strains exhibited antibacterial activity against a set of tested human and fish pathogenic bacteria. Then, to study their associated potential capacity to synthesize diverse bioactive natural products, diversity of genes associated with secondary-metabolite biosynthesis including PKS I, PKS II, NRPS, the enzyme PhzE of the phenazine pathways, the enzyme dTGD of 6-deoxyhexoses glycosylation pathway, the enzyme Halo of halogenation pathway and the enzyme CYP in polyene polyketide biosynthesis were investigated among the isolates. All the strains possess at least two types of the investigated biosynthetic genes, one-fourth of them harbours more than four. This study demonstrates the significant diversity of Actinobacteria in the fish gut microbiota and it's potential to produce biologically active compounds.
Collapse
Affiliation(s)
- Mansooreh Jami
- BOKU - University of Natural Resources and Life Sciences, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, A-1190 Vienna, Austria.
| | - Mahdi Ghanbari
- BOKU - University of Natural Resources and Life Sciences, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, A-1190 Vienna, Austria; University of Zabol, Faculty of Natural Resources, Department of Fisheries, Zabol, Iran
| | - Wolfgang Kneifel
- BOKU - University of Natural Resources and Life Sciences, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, A-1190 Vienna, Austria
| | - Konrad J Domig
- BOKU - University of Natural Resources and Life Sciences, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|