1
|
Patterson E, Stokes P, Cutajar D, Rosenfeld A, Baines J, Metcalfe P, Powers M. High-resolution entry and exit surface dosimetry in a 1.5 T MR-linac. Phys Eng Sci Med 2023; 46:787-800. [PMID: 36988905 DOI: 10.1007/s13246-023-01251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The magnetic field of a transverse MR-linac alters electron trajectories as the photon beam transits through materials, causing lower doses at flat entry surfaces and increased doses at flat beam-exiting surfaces. This study investigated the response of a MOSFET detector, known as the MOSkin™, for high-resolution surface and near-surface percentage depth dose measurements on an Elekta Unity. Simulations with Geant4 and the Monaco treatment planning system (TPS), and EBT-3 film measurements, were also performed for comparison. Measured MOSkin™ entry surface doses, relative to Dmax, were (9.9 ± 0.2)%, (10.1 ± 0.3)%, (11.3 ± 0.6)%, (12.9 ± 1.0)%, and (13.4 ± 1.0)% for 1 × 1 cm2, 3 × 3 cm2, 5 × 5 cm2, 10 × 10 cm2, and 22 × 22 cm2 fields, respectively. For the investigated fields, the maximum percent differences of Geant4, TPS, and film doses extrapolated and interpolated to a depth suitable for skin dose assessment at the beam entry, relative to MOSkin™ measurements at an equivalent depth were 1.0%, 2.8%, and 14.3%, respectively, and at a WED of 199.67 mm at the beam exit, 3.2%, 3.7% and 5.7%, respectively. The largest measured increase in exit dose, due to the electron return effect, was 15.4% for the 10 × 10 cm2 field size using the MOSkin™ and 17.9% for the 22 × 22 cm2 field size, using Geant4 calculations. The results presented in the study validate the suitability of the MOSkin™ detector for transverse MR-linac surface dosimetry.
Collapse
Affiliation(s)
- E Patterson
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
| | - P Stokes
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - D Cutajar
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - A Rosenfeld
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - J Baines
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - P Metcalfe
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - M Powers
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
2
|
Huang CY, Yang B, Lam WW, Tang KK, Li TC, Law WK, Cheung KY, Yu SK. Effects on skin dose from unwanted air gaps under bolus in an MR-guided linear accelerator (MR-linac) system. Phys Med Biol 2021; 66:065021. [PMID: 33607641 DOI: 10.1088/1361-6560/abe837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bolus is commonly used in MV photon radiotherapy to increase superficial dose and improve dose uniformity for treating shallow lesions. However, irregular patient body contours can cause unwanted air gaps between a bolus and patient skin. The resulting dosimetric errors could be exacerbated in MR-Linac treatments, as secondary electrons generated by photons are affected by the magnetic field. This study aimed to quantify the dosimetric effect of unwanted gaps between bolus and skin surface in an MR-Linac. A parallel-plate ionization chamber and EBT3 films were utilized to evaluate the surface dose under bolus with various gantry angles, field sizes, and different air gaps. The results of surface dose measurements were then compared to Monaco 5.40 Treatment Planning System (TPS) calculations. The suitability of using a parallel-plate chamber in MR-Linac measurement was validated by benchmarking the percentage depth dose and output factors with the microDiamond detector and air-filled ionization chamber measurements in water. A non-symmetric response of the parallel-plate chamber to oblique beams in the magnetic field was characterized. Unwanted air gaps significantly reduced the skin dose. For a frontal beam, skin dose was halved when there was a 5 mm gap, a much larger difference than in a conventional linac. Skin dose manifested a non-symmetric pattern in terms of gantry angle and gap size. The TPS overestimated skin dose in general, but shared the same trend with measurement when there was no air gap, or the gap size was larger than 5 mm. However, the calculated and measured results had a large discrepancy when the bolus-skin gap was below 5 mm. When treating superficial lesions, unwanted air gaps under the bolus will compromise the dosimetric goals. Our results highlight the importance of avoiding air gaps between bolus and skin when treating superficial lesions using an MR-Linac system.
Collapse
|
3
|
Analysis of the electron-stream effect in patients treated with partial breast irradiation using the 1.5 T MR-linear accelerator. Clin Transl Radiat Oncol 2021; 27:103-108. [PMID: 33553697 PMCID: PMC7856390 DOI: 10.1016/j.ctro.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
The electron-stream effect is responsible of an out-of-field dose when performing partial breast irradiation at the MR-linac. The electron-stream effect is located to the patient́s chin and, for lateral targets, to the arm. The electron-stream effect is effectively minimized by a bolus. Novel concepts and clinical trials for breast cancer at the 1.5 T MR-linac can be tested.
Introduction The hybrid magnetic resonance linear accelerator (MRL) has the potential to test novel concepts in breast cancer patients such as daily MR-guided real-time plan adaptation. Before starting clinical trials, preparatory studies for example of the MR-dependent electron stream effect (ESE) are necessary. Material and Methods To prospectively investigate the ESE, data from 11 patients treated with partial breast irradiation (PBI) at the 1.5 T MRL were evaluated. A bolus was placed on the chin and in vivo dosimetry results were compared with the dose simulated by the treatment planning system (TPS). The same measurements were carried out for three patients treated at a conventional linac. Toxicity and cosmesis were evaluated. Results Median doses measured and simulated on top/ underneath the bolus were 1.91 / 0.62 Gy and 2.82 / 0.63 Gy, respectively. Median differences between calculations and measurements were 0.8 Gy and 0.1 Gy. At the conventional linac, median measured doses on top/ underneath the bolus were 0.98 and 1.37 Gy. No acute toxicity exceeding grade 2 was recorded. Cosmesis was good or excellent and patient reported outcome measures were mostly scored as none or mild. Conclusion The dose due to the ESE is low, correctly predicted by the TPS and effectively minimized by a bolus.
Collapse
|
4
|
Elliott S, Berlangieri A, Wasiak J, Chao M, Foroudi F. Use of magnetic resonance imaging-guided radiotherapy for breast cancer: a scoping review protocol. Syst Rev 2021; 10:44. [PMID: 33526097 PMCID: PMC7852080 DOI: 10.1186/s13643-021-01594-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/18/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In recent years, we have seen the incorporation of magnetic resonance imaging (MRI) simulators into radiotherapy centres and the emergence of the new technology of MR linacs. However, the significant health care resources associated with this advanced technology impact immediate widespread use and availability. There are currently limited studies to demonstrate the clinical effectiveness and inform decision-making on the use of MRI in radiotherapy. The objective of this scoping review is to identify and map the existing evidence surrounding the clinical implementation of MRI-guided radiotherapy in patients with breast cancer. It also aims to identify challenges and knowledge gaps in the literature. METHODS We will perform a comprehensive search in MEDLINE and EMBASE databases from January 2010 onwards. Grey literature sources will include the WHO International Clinical Trials Registry Platform. We will include systematic reviews, randomised and non-randomised controlled studies published in English. Literature should examine the use of magnetic resonance imaging-guided radiotherapy in adults with breast cancer, regardless of cancer stage or severity. Two reviewers will independently screen all titles, abstracts and full-text reports. Data will be extracted and summarised using qualitative (e.g. content and thematic analysis) methods and presented in tables. DISCUSSION The results from this review will consolidate the evidence surrounding MRI-guided radiotherapy for breast cancer, contributing to the development and optimisation of patient selection, simulation, planning, treatment delivery, quality assurance and research, to help improve patient outcomes, cancer care and treatment for women with breast cancer. SYSTEMATIC REVIEW REGISTRATION The protocol is available on Open Science Framework at DOI https://doi.org/10.17605/OSF.IO/8TEV6.
Collapse
Affiliation(s)
- Sarah Elliott
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia.
| | - Alexandra Berlangieri
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Jason Wasiak
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Michael Chao
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Farshad Foroudi
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|