1
|
Alshammari NAH, Bakhotmah DA. Synthesis, reactivity, antimicrobial, and anti-biofilm evaluation of fluorinated 4-amino-3-mercapto-1,2,4-triazin-5(4 H)-one and their derivatives. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2150856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Nawaa Ali H. Alshammari
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Northern Border University, Rafha, Saudi Arabia
| | - Dina A. Bakhotmah
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Biswas RG, Ray SK, Unhale RA, Singh VK. Organocatalytic Asymmetric Cascade Michael-acyl Transfer Reaction between 2-Fluoro-1,3-diketones and Unsaturated Thiazolones: Access to Fluorinated 4-Acyloxy Thiazoles. Org Lett 2021; 23:6504-6509. [PMID: 34351776 DOI: 10.1021/acs.orglett.1c02313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quinine derived bifunctional urea catalyzed cascade Michael-acyl transfer reaction of 5-alkenyl thiazolones and monofluorinated β-diketones has been developed. The fluorine containing 4-acyloxy thiazoles were synthesized in high yields and good diastereo-and excellent enantioselectivities. Synthetic transformations, including synthesis of 4-hydroxy thiazoles, have been demonstrated.
Collapse
Affiliation(s)
- Rayhan G Biswas
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Sumit K Ray
- Department of Chemistry, Kharagpur College, Paschim Medinipur, West Bengal 721305, India
| | - Rajshekhar A Unhale
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
3
|
Abdelwahed RE, Radhi AH, Awad HM, El Gokha AA, Goda AES, El Sayed IET. Synthesis and Anti-Proliferative Activity of New α-Amino Phosphonate Derivatives Bearing Heterocyclic Moiety. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02404-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Abed Bakhotmah D. Synthesis of Fluorine and Phosphorus Compounds Bearing an Amino Pyrimidine-Substituted Pyrazolo[3,4- d]Pyrimidine Moiety as Molluscicidal Agents against Some Snails. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2019.1625066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
S. Alharbi A, M. Abdel-Rahman R. Synthesis and Chemistry of Phosphorus Compounds Substituted by 1,2,4-Triazine Moieties as Medicinal Probes. HETEROCYCLES 2021. [DOI: 10.3987/rev-21-960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Abdel-Rahman RM, Assiri MA, Fouda AM, Ali TE. Synthetic Approach for Substituted 3-Amino-1,2,4-Triazines and their Chemical Reactivity and Biological Properties. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190724105040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
3-Amino-1,2,4-triazines are considered versatile compounds for its significance as building
blocks in synthetic and pharmaceutical chemistry. The synthesis, chemical reactivity, and applications
of substituted 1,2,4-triazines bearing an amino group were described in this review. The presence
of the amino group at position 3 exhibited unique reactivities towards carbonitrile, carbonyl and
isothiocyanate reagents. The reactions were divided into several categories, depending on the other
substituents on the 1,2,4-triazine ring. In this review, relevant and appropriate applications of the
synthesized, isolated, and condensed heterocycles derivatives were reported.
Collapse
Affiliation(s)
- Reda M. Abdel-Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed M. Fouda
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Tarik E. Ali
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
7
|
Bakhotmah DA. A recent approach for the synthesis of 1,2,4-triazine systems bearing and/or containing phosphorus atoms as donor-acceptor interaction and their biocidal affects: An overview. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1722668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dina Abed Bakhotmah
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Al-Otaibi FA, Bakhotmah DA. Synthesis and Biological Evaluation of New Fluorine Compounds Bearing 4-Amino-1,2,4-triazino[4,3-b]-1,2,4-triazin-8-one and the Related Derivatives as CDK2 Inhibitors of Tumor Cell. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1747098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fatimah A. Al-Otaibi
- King Abdulaziz University, Jeddah, Saudi Arabia
- Tabuk University, Tabuk, Saudi Arabia
| | | |
Collapse
|
9
|
Abdel-Rahman RM, Alharbi AS, Alshammari NA, Adnan YO. Design, Synthesis and Molluscicidal Activity of New Phosphorus Compounds Bearing Fluorine Substituted 1,2,4-Triazolo[3,2-c][1,2,4]triazine Derivatives. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190718120953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Novel phosphorus compounds bearing fluorine substituted 1,2,4-triazolo[3,2-c][1,2,4]triazine derivatives have been synthesized, starting from ring closure reactions of 3-hydrazino-4-(4`- fluorophenyl)-5-(prydin-4`-yl)-1,2,4-trizole (4) with 1,2-bioxygen compounds followed by the treatment with functional phosphorus compounds. The new systems obtained were evaluated as molluscicidal targets against some snails. Structures of these targets were elucidated upon their elemental and spectral data.
Collapse
Affiliation(s)
- Reda M. Abdel-Rahman
- Department of Chemistry, Faculty of Science, King Abdul Aziz University, P.O. Box.42805 Jeddah 21551, Saudi Arabia
| | - Abdulrahman S. Alharbi
- Department of Chemistry, Faculty of Science, King Abdul Aziz University, P.O. Box.42805 Jeddah 21551, Saudi Arabia
| | - Nawaa A. Alshammari
- Department of Chemistry, Faculty of Science, King Abdul Aziz University, P.O. Box.42805 Jeddah 21551, Saudi Arabia
| | - Yousuf O. Adnan
- Department of Chemistry, Faculty of Science, King Abdul Aziz University, P.O. Box.42805 Jeddah 21551, Saudi Arabia
| |
Collapse
|
10
|
Han J, Takeda R, Liu X, Konno H, Abe H, Hiramatsu T, Moriwaki H, Soloshonok VA. Preparative Method for Asymmetric Synthesis of ( S)-2-Amino-4,4,4-trifluorobutanoic Acid. Molecules 2019; 24:E4521. [PMID: 31835583 PMCID: PMC6943542 DOI: 10.3390/molecules24244521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/30/2022] Open
Abstract
Enantiomerically pure derivatives of 2-amino-4,4,4-trifluorobutanoic acid are in great demand as bioisostere of leucine moiety in the drug design. Here, we disclose a method specifically developed for large-scale (>150 g) preparation of the target (S)-N-Fmoc-2-amino-4,4,4-trifluorobutanoic acid. The method employs a recyclable chiral auxiliary to form the corresponding Ni(II) complex with glycine Schiff base, which is alkylated with CF3-CH2-I under basic conditions. The resultant alkylated Ni(II) complex is disassembled to reclaim the chiral auxiliary and 2-amino-4,4,4-trifluorobutanoic acid, which is in situ converted to the N-Fmoc derivative. The whole procedure was reproduced several times for consecutive preparation of over 300 g of the target (S)-N-Fmoc-2-amino-4,4,4-trifluorobutanoic acid.
Collapse
Affiliation(s)
- Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; (J.H.); (X.L.)
| | - Ryosuke Takeda
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan; (R.T.); (T.H.)
| | - Xinyi Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; (J.H.); (X.L.)
| | - Hiroyuki Konno
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992‑8510, Japan;
| | - Hidenori Abe
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan; (R.T.); (T.H.)
| | - Takahiro Hiramatsu
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan; (R.T.); (T.H.)
| | - Hiroki Moriwaki
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan; (R.T.); (T.H.)
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013 Bilbao, Spain
| |
Collapse
|
11
|
Mei H, Han J, Klika KD, Izawa K, Sato T, Meanwell NA, Soloshonok VA. Applications of fluorine-containing amino acids for drug design. Eur J Med Chem 2019; 186:111826. [PMID: 31740056 DOI: 10.1016/j.ejmech.2019.111826] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 01/26/2023]
Abstract
Fluorine-containing amino acids are becoming increasingly prominent in new drugs due to two general trends in the modern pharmaceutical industry. Firstly, the growing acceptance of peptides and modified peptides as drugs; and secondly, fluorine editing has become a prevalent protocol in drug-candidate optimization. Accordingly, fluorine-containing amino acids represent one of the more promising and rapidly developing areas of research in organic, bio-organic and medicinal chemistry. The goal of this Review article is to highlight the current state-of-the-art in this area by profiling 42 selected compounds that combine fluorine and amino acid structural elements. The compounds under discussion represent pharmaceutical drugs currently on the market, or in clinical trials as well as examples of drug-candidates that although withdrawn from development had a significant impact on the progress of medicinal chemistry and/or provided a deeper understanding of the nature and mechanism of biological action. For each compound, we present features of biological activity, a brief history of the design principles and the development of the synthetic approach, focusing on the source of tailor-made amino acid structures and fluorination methods. General aspects of the medicinal chemistry of fluorine-containing amino acids and synthetic methodology are briefly discussed.
Collapse
Affiliation(s)
- Haibo Mei
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan.
| | - Tatsunori Sato
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, 533-0024, Japan
| | - Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ, 08543-4000, United States.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, Plaza Bizkaia, 48013, Bilbao, Spain.
| |
Collapse
|
12
|
Mei H, Han J, White S, Butler G, Soloshonok VA. Perfluoro-3-ethyl-2,4-dimethyl-3-pentyl persistent radical: A new reagent for direct, metal-free radical trifluoromethylation and polymer initiation. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Tokairin Y, Soloshonok VA, Konno H, Moriwaki H, Röschenthaler GV. Convenient synthesis of racemic 4,4-difluoro glutamic acid derivatives via Michael-type additions of Ni(II)-complex of dehydroalanine Schiff bases. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Mei H, Han J, Takeda R, Sakamoto T, Miwa T, Minamitsuji Y, Moriwaki H, Abe H, Soloshonok VA. Practical Method for Preparation of ( S)-2-Amino-5,5,5-trifluoropentanoic Acid via Dynamic Kinetic Resolution. ACS OMEGA 2019; 4:11844-11851. [PMID: 31460294 PMCID: PMC6682081 DOI: 10.1021/acsomega.9b01537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/25/2019] [Indexed: 05/08/2023]
Abstract
This work reports an operationally convenient ∼20 g scale synthesis of (S)-2-amino-5,5,5-trifluoropentanoic acid and its Fmoc-derivative via dynamic kinetic resolution of the corresponding racemate.
Collapse
Affiliation(s)
- Haibo Mei
- College
of Chemical Engineering Nanjing Forestry University, Nanjing 210037, China
| | - Jianlin Han
- College
of Chemical Engineering Nanjing Forestry University, Nanjing 210037, China
| | - Ryosuke Takeda
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, San Sebastián 20018, Spain
| | - Tsubasa Sakamoto
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Toshio Miwa
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Yutaka Minamitsuji
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hiroki Moriwaki
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Hidenori Abe
- Hamari
Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, San Sebastián 20018, Spain
- IKERBASQUE—Basque
Foundation for Science, María
Díaz de Haro 3, Plaza Bizkaia, Bilbao 48013, Spain
| |
Collapse
|