1
|
Shinde V, Desai K. Selenium-Methionine-Folic Acid Nanoparticles (SeMetFa NPs) and Its In Vivo Efficacy Against Rheumatoid Arthritis. Biol Trace Elem Res 2024; 202:2184-2198. [PMID: 37682396 DOI: 10.1007/s12011-023-03840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Selenium nanoparticles can be beneficial against rheumatoid arthritis, with limitations in dosage formulation due to their toxicity and low bioavailability. In the present study, we investigated the bioavailability and in vivo efficiency of selenium-methionine-folic acid nanoparticles (SeMetFa NPs) in chronic inflammatory arthritis in rats. The purpose of this study was to develop a therapeutic agent that is of low toxicity and readily available for the maintenance of rheumatoid arthritis. SeMetFa NPs were synthesised by a wet chemical method (precipitation using a reducing agent). The apparent permeability (Papp) of NPs was investigated to be 10 × 10-6 cm/s. The effect of selenium-methionine-folic acid nanoparticles (SeMetFa NPs) on rats was investigated for oxidative status, anti-inflammatory markers, physical characteristics, radiography of the paw region, and histopathology. Groups with 250 and 500 mg/kg b.w SeMetFa NPs acted as a potent anti-inflammatory agent with reduced (p < 0.05) arthritis-induced parameters in a 21-day study on Wistar rats. The antioxidant enzyme levels in the liver, kidney, and spleen were restored significantly at 500 and 750 mg/kg b.w. Concluding SeMetFa NPs at a concentration of 500 mg/kg b.w. can be a potential therapeutic agent as compared to dextrin-coated nanoparticles.
Collapse
Affiliation(s)
- Vrundali Shinde
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-Be) University, Mumbai, 400056, India
| | - Krutika Desai
- SVKM's Mithibai College of Arts Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Mumbai, 400056, India.
| |
Collapse
|
2
|
Hyper-Branched Cationic Cyclodextrin Polymers for Improving Plasmid Transfection in 2D and 3D Spheroid Cells. Pharmaceutics 2022; 14:pharmaceutics14122690. [PMID: 36559184 PMCID: PMC9785855 DOI: 10.3390/pharmaceutics14122690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
In this article, we used monolayer two dimensional (2D) and 3D multicellular spheroid models to improve our understanding of the gene delivery process of a new modified cationic hyper-branched cyclodextrin-based polymer (Ppoly)-loaded plasmid encoding Enhanced Green Fluorescent Protein (EGFP). A comparison between the cytotoxicity effect and transfection efficiency of the plasmid DNA (pDNA)-loaded Ppoly system in 2D and 3D spheroid cells determined that the transfection efficiency and cytotoxicity of Ppoly-pDNA nanocomplexes were lower in 3D spheroids than in 2D monolayer cells. Furthermore, histopathology visualization of Ppoly-pDNA complex cellular uptake in 3D spheroids demonstrated that Ppoly penetrated into the inner layers. This study indicated that the Ppoly, as a non-viral gene delivery system in complex with pDNA, is hemocompatible, non-toxic, high in encapsulation efficiency, and has good transfection efficiency in both 2D and 3D cell cultures compared to free pDNA and lipofectamine (as the control).
Collapse
|
3
|
Araya-Sibaja AM, Wilhelm-Romero K, Quirós-Fallas MI, Vargas Huertas LF, Vega-Baudrit JR, Navarro-Hoyos M. Bovine Serum Albumin-Based Nanoparticles: Preparation, Characterization, and Antioxidant Activity Enhancement of Three Main Curcuminoids from Curcuma longa. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092758. [PMID: 35566108 PMCID: PMC9106055 DOI: 10.3390/molecules27092758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Bovine Serum Albumin (BSA) lipid hybrid nanoparticles are part of the new solutions to overcome low bioavailability of poor solubility drugs such as curcuminoids, which possess multiple biological advantages; however, they are counterbalanced by its short biological half-life. In this line, we prepared the three main curcuminoids: curcumin (CUR), desmethoxycurcumin (DMC), and bisdemethoxycurcumin (BDM)-loaded BSA nanoparticles. The three formulations were characterized by the average size, size distribution, crystallinity, weight loss, drug release, kinetic mechanism, and antioxidant activity. The developed method produced CUR-, DMC-, and BDM-loaded BSA nanoparticles with a size average of 15.83 ± 0.18, 17.29 ± 3.34, and 15.14 ± 0.14 nm for CUR, DMC, and BDM loaded BSA, respectively. FT-IR analysis confirmed the encapsulation, and TEM images showed their spherical shape. The three formulations achieved encapsulation efficiency upper to 96% and an exhibited significantly increased release from the nanoparticle compared to free compounds in water. The antioxidant activity was enhanced as well, in agreement with the improvement in water release, obtaining IC50 values of 9.28, 11.70, and 15.19 µg/mL for CUR, DMC, and BDM loaded BSA nanoparticles, respectively, while free curcuminoids exhibited considerably lower antioxidant values in aqueous solution. Hence, this study shows promises for such hybrid systems, which have been ignored so far, regarding proper encapsulation, protection, and delivery of curcuminoids for the development of functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Andrea Mariela Araya-Sibaja
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, Pavas, San José 1174-1200, Costa Rica; (K.W.-R.); (J.R.V.-B.)
- Correspondence: ; Tel.: +506-2519-5700 (ext. 6016)
| | - Krissia Wilhelm-Romero
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, Pavas, San José 1174-1200, Costa Rica; (K.W.-R.); (J.R.V.-B.)
- Laboratorio BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica; (M.I.Q.-F.); (L.F.V.H.); (M.N.-H.)
| | - María Isabel Quirós-Fallas
- Laboratorio BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica; (M.I.Q.-F.); (L.F.V.H.); (M.N.-H.)
| | - Luis Felipe Vargas Huertas
- Laboratorio BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica; (M.I.Q.-F.); (L.F.V.H.); (M.N.-H.)
| | - José Roberto Vega-Baudrit
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, Pavas, San José 1174-1200, Costa Rica; (K.W.-R.); (J.R.V.-B.)
- Laboratorio de Investigación y Tecnología de Polímeros POLIUNA, Escuela de Química, Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - Mirtha Navarro-Hoyos
- Laboratorio BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica; (M.I.Q.-F.); (L.F.V.H.); (M.N.-H.)
| |
Collapse
|
4
|
Response of platelets to silver nanoparticles designed with different surface functionalization. J Inorg Biochem 2021; 224:111565. [PMID: 34411938 DOI: 10.1016/j.jinorgbio.2021.111565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/20/2022]
Abstract
Despite increasing use of silver nanoparticles (AgNPs) in different medicinal products, knowledge about their effects on hemostasis and platelets functionality is still scarce. Published scientific reports provide neither data on oxidative stress response of platelets to AgNPs nor information about the effects of AgNPs physicochemical properties on functionality and activation of platelets. This study aimed to explore the role of AgNPs surface functionalization on cell viability, particle uptake, oxidative stress response, and activation of platelets. Small sized, spherical AgNPs were surface functionalized by negatively charged sodium bis(2-ethylhexyl) sulphosuccinate (AOT), neutral polymer polyvinylpyrrolidone (PVP), positively charged polymer poly-l-lysine (PLL) and bovine serum albumin (BSA). Platelet viability, activation and particle uptake were evaluated by flow cytometry. Oxidative stress response was evaluated by measuring the levels of intracellular glutathione (GSH), peroxy and superoxide radicals using assays based on fluorescence dies. Cytotoxicity and uptake of AgNPs to platelets were found to be dose-dependent in a following order PLL-AgNP >> > BSA-AgNP > AOT-AgNP > PVP-AgNP. Particle internalization was further confirmed by transmission electron microscopy. Treatment of platelets with AgNPs induced superoxide radical formation, depletion of GSH and hyperpolarization of the mitochondrial membrane. Small, but statistically significant increase of P-selectin expression in cells treated with all AgNPs compared to non-treated controls evidenced AgNPs-induced activation of platelets. Increased PAC-1 expression was found only in platelets treated with PLL-AgNPs. Obtained results demonstrate that different surface decoration of AgNPs determines their biological effects on platelets highlighting the importance of careful design of AgNPs-based medicinal products regarding their biocompatibility and functionality.
Collapse
|
5
|
Molecular modeling prediction of albumin-based nanoparticles and experimental preparation, characterization, and in-vitro release kinetics of prednisolone from the nanoparticles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Zhang Y, Wang L, Li G, Gao J. Berberine-Albumin Nanoparticles: Preparation, Thermodynamic Study and Evaluation Their Protective Effects Against Oxidative Stress in Primary Neuronal Cells as a Model of Alzheimer's Disease. J Biomed Nanotechnol 2021; 17:1088-1097. [PMID: 34167623 DOI: 10.1166/jbn.2021.2995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Berberine has shown an outstanding antioxidant activity, however the low bioavailability limits its applications in pharmaceutical platforms. Therefore, in this paper, after fabrication of the berberine-HSA nanoparticles by desolvation method, they were well characterized by TEM, SEM, DLS, and FTIR techniques. Afterwards the interaction of HSA and the berberine was evaluated by molecular docking analysis. Finally, the antioxidant activity of the berberine-HSA nanoparticles against H₂O₂-induced oxidative stress in cultured neurons as a model of AD was evaluated by cellular assays. The results showed that the prepared berberine-HSA nanoparticles have a spherical-shaped morphology with a size of around 100 nm and zeta potential value of -31.84 mV. The solubility value of nanoparticles was calculated to be 40.27%, with a berberine loading of 19.37%, berberine entrapment efficiency of 70.34%, and nanoparticles yield of 88.91%. Also, it was shown that the berberine is not significantly released from HSA nanoparticles within 24 hours. Afterwards, molecular docking investigation revealed that berberine spontaneously interacts with HSA through electrostatic interaction. Finally, cellular assays disclosed that the pretreatment of neuronal cultures with berberine-HSA nanoparticles decreased the H₂O₂-stimulated cytotoxicity and relevant morphological changes and enhanced the CAT activity. In conclusion, it can be indicated that the nanoformulation of the berberine can be used as a promising platform for inhibition of oxidative damage-induced Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Yaohui Zhang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan Province 471009, P. R. China
| | - Lixiang Wang
- Department of Neurology, Laigang Hospital Affiliated to Shandong First Medical University, Jinan 271126, China
| | - Guichen Li
- Department of Clinical Psychology, Qingdao Mental Health Center Clinical Psychology, 266034, China
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| |
Collapse
|
7
|
Raghava S, Munnene Mbae K, Umesha S. Green synthesis of silver nanoparticles by Rivina humilis leaf extract to tackle growth of Brucella species and other perilous pathogens. Saudi J Biol Sci 2020; 28:495-503. [PMID: 33424332 PMCID: PMC7785426 DOI: 10.1016/j.sjbs.2020.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 10/30/2022] Open
Abstract
Novel approaches are obligatory to treat chronic intracellular bacterial infectious diseases like Brucellosis specifically, are very complicated to deal with. The aim of the study to take upon nanotechnology approach to exploit the efficacy of the synthesized nanoparticles, to overcome barriers for treatment of Brucella species and other pathogens. Present study used Rivina humilis extract as reductant of silver ions for synthesis of silver nanoparticles for the first time. Rh-AgNP's was characterized by UV-visible spectroscopy, DLS, FT-IR, SEM, EDS, TEM and XRD. Radical scavenging, antibrucellosis, bactericidal activity was evaluated. Clinical application was assessed by Rate of haemolysis, fibrinolytic and Hemagglutination activity. UV-visible spectrum of synthesized Rh-AgNP's showed maximum peak at 440 nm indicating the formation of nanoparticles. TEM showed that the average particle size of nanoparticles 51 nm with spherical shape, DLS depicted monodisperse state in water; EDS confirmed the presence of silver metal. Rh-AgNP's exhibited potential antibrucellosis activity against B. abortus, B. melitensis and B. suis effective inhibition at 800 μg/mL. The bio-compatibility of Rh-AgNP's was established by rate of haemolysis, hemagglutination and fibrinolytic activity. For the first time it has been proved that Rh-AgNP's have efficacy as antimicrobial agent with potential application in the biological domain.
Collapse
Affiliation(s)
- Sri Raghava
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| | - Kenneth Munnene Mbae
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| | - S Umesha
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| |
Collapse
|
8
|
Vuković B, Milić M, Dobrošević B, Milić M, Ilić K, Pavičić I, Šerić V, Vrček IV. Surface Stabilization Affects Toxicity of Silver Nanoparticles in Human Peripheral Blood Mononuclear Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1390. [PMID: 32708883 PMCID: PMC7407574 DOI: 10.3390/nano10071390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Silver nanoparticles (AgNPs) are one of the most investigated metal-based nanomaterials. Their biocidal activity boosted their application in both diagnostic and therapeutic medical systems. It is therefore crucial to provide sound evidences for human-related safety of AgNPs. This study aimed to enhance scientific knowledge with regard to biomedical safety of AgNPs by investigating how their different surface properties affect human immune system. METHODS preparation, characterization and stability evaluation was performed for four differently coated AgNPs encompassing neutral, positive and negative agents used for their surface stabilization. Safety aspects were evaluated by testing interaction of AgNPs with fresh human peripheral blood mononuclear cells (hPBMC) by means of particle cellular uptake and their ability to trigger cell death, apoptosis and DNA damages through induction of oxidative stress and damages of mitochondrial membrane. RESULTS all tested AgNPs altered morphology of freshly isolated hPBMC inducing apoptosis and cell death in a dose- and time-dependent manner. Highest toxicity was observed for positively-charged and protein-coated AgNPs. Cellular uptake of AgNPs was also dose-dependently increased and highest for positively charged AgNPs. Intracellularly, AgNPs induced production of reactive oxygen species (ROS) and damaged mitochondrial membrane. Depending on the dose, all AgNPs exhibited genotoxic potential. CONCLUSIONS this study provides systematic and comprehensive data showing how differently functionalized AgNPs may affect the human immune system. Presented results are a valuable scientific contribution to safety assessment of nanosilver-based blood-contacting medical products.
Collapse
Affiliation(s)
- Barbara Vuković
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (B.V.); (M.M.); (B.D.); (V.Š.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Marija Milić
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (B.V.); (M.M.); (B.D.); (V.Š.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Blaženka Dobrošević
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (B.V.); (M.M.); (B.D.); (V.Š.)
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.M.); (K.I.); (I.P.)
| | - Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.M.); (K.I.); (I.P.)
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.M.); (K.I.); (I.P.)
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (B.V.); (M.M.); (B.D.); (V.Š.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia; (M.M.); (K.I.); (I.P.)
| |
Collapse
|
9
|
Mostoufi H, Yousefi G, Tamaddon AM, Firuzi O. Reversing multi-drug tumor resistance to Paclitaxel by well-defined pH-sensitive amphiphilic polypeptide block copolymers via induction of lysosomal membrane permeabilization. Colloids Surf B Biointerfaces 2019; 174:17-27. [DOI: 10.1016/j.colsurfb.2018.10.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/18/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
|
10
|
Zayed DG, Ebrahim SM, Helmy MW, Khattab SN, Bahey-El-Din M, Fang JY, Elkhodairy KA, Elzoghby AO. Combining hydrophilic chemotherapy and hydrophobic phytotherapy via tumor-targeted albumin-QDs nano-hybrids: covalent coupling and phospholipid complexation approaches. J Nanobiotechnology 2019; 17:7. [PMID: 30660179 PMCID: PMC6339697 DOI: 10.1186/s12951-019-0445-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/07/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The rationale of this study is to combine the merits of both albumin nanoparticles and quantum dots (QDs) in improved drug tumor accumulation and strong fluorescence imaging capability into one carrier. However, premature drug release from protein nanoparticles and high toxicity of QDs due to heavy metal leakage are among challenging hurdles. Following this platform, we developed cancer nano-theranostics by coupling biocompatible albumin backbone to CdTe QDs and mannose moieties to enhance tumor targeting and reduce QDs toxicity. The chemotherapeutic water soluble drug pemetrexed (PMT) was conjugated via tumor-cleavable bond to the albumin backbone for tumor site-specific release. In combination, the herbal hydrophobic drug resveratrol (RSV) was preformulated as phospholipid complex which enabled its physical encapsulation into albumin nanoparticles. RESULTS Albumin-QDs theranostics showed enhanced cytotoxicity and internalization into breast cancer cells that could be traced by virtue of their high fluorescence quantum yield and excellent imaging capacity. In vivo, the nanocarriers demonstrated superior anti-tumor effects including reduced tumor volume, increased apoptosis, and inhibited angiogenesis in addition to non-immunogenic response. Moreover, in vivo bioimaging test demonstrated excellent tumor-specific accumulation of targeted nanocarriers via QDs-mediated fluorescence. CONCLUSION Mannose-grafted strategy and QD-fluorescence capability were beneficial to deliver albumin nanocarriers to tumor tissues and then to release the anticancer drugs for killing cancer cells as well as enabling tumor imaging facility. Overall, we believe albumin-QDs nanoplatform could be a potential nano-theranostic for bioimaging and targeted breast cancer therapy.
Collapse
Affiliation(s)
- Dina G Zayed
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Shaker M Ebrahim
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhur, Egypt
| | - Sherine N Khattab
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Mohammed Bahey-El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, 333, Taiwan. .,Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, 333, Taiwan. .,Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan.
| | - Kadria A Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt. .,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt. .,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
11
|
Elnaggar YSR, Elsheikh MA, Abdallah OY. Phytochylomicron as a dual nanocarrier for liver cancer targeting of luteolin: in vitro appraisal and pharmacodynamics. Nanomedicine (Lond) 2018; 13:209-232. [DOI: 10.2217/nnm-2017-0220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: A novel luteolin (LUT) loaded dual bionanocarrier ‘phytochylomicron’ was elaborated to allow LUT injectable delivery and liver cancer targeting. Methods: LUT–phospholipid complex was prepared and loaded into chylomicron nanocarrier. Then phytochylomicron underwent physicochemical characterization, cell culture and pharmacodynamics studies on a new liver-tumor model. Results: Phytochylomicron showed sustained release pattern with minimum drug leakage until reaching the liver. Cell culture studies showed high growth inhibition of Hep G2 cells with 2.6-fold enhancement in cellular uptake. Pharmacodynamics demonstrated enhanced tumor growth inhibition (sixfold) with a significant tumor size reduction. Finally, cell culture results demonstrated an excellent correlation with pharmacodynamics confirming the obtained findings. Conclusion: A novel phytochylomicron nanosystem was successfully elaborated with promising characteristics that promoted injectable LUT delivery and liver cancer targeting. [Formula: see text]
Collapse
Affiliation(s)
- Yosra SR Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Manal A Elsheikh
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Hoonjan M, Sachdeva G, Chandra S, Kharkar PS, Sahu N, Bhatt P. Investigation of HSA as a biocompatible coating material for arsenic trioxide nanoparticles. NANOSCALE 2018; 10:8031-8041. [PMID: 29670967 DOI: 10.1039/c7nr09503a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The synthesis of human serum albumin coated As2O3 NPs with improved biocompatibility.
Collapse
Affiliation(s)
- Maneka Hoonjan
- Department of Biological Sciences
- Sunandan Divatia School of Science
- SVKM's NMIMS (Deemed-to-be University)
- Mumbai 400056
- India
| | - Geetanjali Sachdeva
- Primate Biology Department
- National Institute for Research in Reproductive Health (NIRRH)
- Mumbai 400012
- India
| | - Sudeshna Chandra
- Department of Chemistry
- Sunandan Divatia School of Science
- SVKM's NMIMS (Deemed-to-be University)
- Mumbai 400056
- India
| | - Prashant S. Kharkar
- Department of Pharmaceutical Chemistry
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management
- SVKM's NMIMS (Deemed-to-be University)
- Mumbai 400056
- India
| | - Niteshkumar Sahu
- Department of Pharmaceutical Chemistry
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management
- SVKM's NMIMS (Deemed-to-be University)
- Mumbai 400056
- India
| | - Purvi Bhatt
- Department of Biological Sciences
- Sunandan Divatia School of Science
- SVKM's NMIMS (Deemed-to-be University)
- Mumbai 400056
- India
| |
Collapse
|
13
|
Manukumar HM, Umesha S, Kumar HNN. Promising biocidal activity of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) as anti-infective agents against perilous pathogens. Int J Biol Macromol 2017; 102:1257-1265. [PMID: 28495626 DOI: 10.1016/j.ijbiomac.2017.05.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/26/2017] [Accepted: 05/06/2017] [Indexed: 01/01/2023]
Abstract
The advent of biodegradable polymer-encapsulated drug nanoparticles has made an exciting area of drug delivery research. The present study investigated novel and simple route for synthesis of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) using chitosan and thymol as reducing, capping agent respectively to understand the therapeutic efficacy. The UV-vis spectroscopy, DLS, FT-IR, SEM, EDS, XRD used for characterization and radical scavenging activity, anti-microbial and biocompatibility was taken to ascertain an efficacy of novel T-C@AgNPs. The T-C@AgNPs intense peak at 490nm indicates the formation of nanoparticles and had average particle size of 28.94nm with spherical shape, monodisperse state in water, also exhibited excellent biocompatibility of cubic shaped pure silver element containing T-C@AgNPs. The antibacterial activity was studied for gram positive and gram negative food-borne pathogens and effective inhibition at 100μgmL-1 to S. aureus, S. epidermidis, S. haemolyticus (10.08, 10.00, 11.23mm) and S. typhimurium, P. aeruginosa and S. flexneri (9.28, 9.33, 12.03mm) compared to antibiotic Streptomycin. This study revealed the efficacy against multiple food-borne pathogens and therapeutic efficacy of T-C@AgNPs offers a valuable contribution in the area of nanotechnology. This proved to be a first-class novel antimicrobial material for the first time in this study.
Collapse
Affiliation(s)
- H M Manukumar
- Department of Studies in Biotechnology, University of Mysosre, Manasagangotri, Mysuru 570006, Karnataka, India
| | - S Umesha
- Department of Studies in Biotechnology, University of Mysosre, Manasagangotri, Mysuru 570006, Karnataka, India.
| | - H N Naveen Kumar
- Department of Studies in Biochemistry, Kuvempu University, Shankarghatta, Shimoga, Karnataka, India
| |
Collapse
|