1
|
Akay S, Yüksel G, Özad Düzgün A. Investigation of Antibiofilm and Antibacterial Properties of Green Synthesized Silver Nanoparticles from Aqueous Extract of Rumex sp. Appl Biochem Biotechnol 2024; 196:1089-1103. [PMID: 37329410 DOI: 10.1007/s12010-023-04592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
The decrease in the effectiveness of conventional drugs as a result of the growth of resistance to antibiotics has increased the need for innovative tools to control the infections. At this point, metallic nanoparticles, in particular silver nanoparticles, have appeared as a promising method. In the current study, the extract of Rumex sp. (Labada, dock) leaves was used as a reducing agent for the formation of silver nanoparticles. Unlike similar studies, in this study the synthesis conditions were optimized by changing the extract ratio and silver nitrate concentration. Morphological investigations of synthesized silver nanoparticles showed that spherical homogeneous particles at size under 100 nm had been produced. SEM/EDS and FTIR analyses showed that plant components are involved in the synthesis of nanoparticles. It was also determined that higher extract ratio reduced nanoparticle size. The antimicrobial effects of the synthesized nanoparticles against Gram-positive and Gram-negative bacteria were tested, and it was determined that all nanoparticles exhibited activity against both groups. Rumex sp. silver nanoparticles (NPs) were revealed to exhibit antibiofilm activity against three different isolates with moderate and strong biofilm-forming ability. The NPs reduced the biofilm-forming capacity of Acinetobacter baumannii and Klebsiella pneumonaie by 2.66-fold and 3.25-fold, whereas they decreased the Escherichia coli biofilm-forming capacity by 1.25-fold. The investigation of microbial biofilm could play an important role in developing new strategies for treatment options. Our results suggest that Rumex sp. silver NPs may have a high potential for use in the treatment of pathogenic strains.
Collapse
Affiliation(s)
- Seref Akay
- Department of Genetics and Bioengineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, Alanya, Antalya, Turkey
| | - Gamze Yüksel
- Department of Biotechnology, Institute of Graduate Education, Gumushane University, Gümüşhane, Turkey
| | - Azer Özad Düzgün
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, 29100, Gümüşhane, Turkey.
| |
Collapse
|
2
|
Hussein NN, Al-Azawi K, Sulaiman GM, Albukhaty S, Al-Majeed RM, Jabir M, Al-Dulimi AG, Mohammed HA, Akhtar N, Alawaji R, A Alshammari AA, Khan RA. Silver-cored Ziziphus spina-christi extract-loaded antimicrobial nanosuspension: overcoming multidrug resistance. Nanomedicine (Lond) 2023; 18:1839-1854. [PMID: 37982771 DOI: 10.2217/nnm-2023-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Aims: To synthesize a silver-cored nanosuspension utilizing Ziziphus spina-christi fresh-leaf extract and evaluate their antimicrobial activity against multidrug-resistant pathogenic microbes. Materials and Methods: The prepared nanosuspension was analyzed by spectro-analytical techniques and tested for antimicrobial activity and resistance to biofilm formation. The leaf extract and nanosuspension were tested separately and together as a mixture. Results: Constituent nanoparticles were average-sized (∼34 nm) and were active against both Gram-positive and Gram-negative microbes and yeast. Candida albicans showed a 24.50 ± 1.50 mm inhibition zone, followed by Escherichia coli and Staphylococcus aureus. Increased bioactivity with the highest multifold increments, 150%, for erythromycin against all tested microbes was observed. Carbenicillin and trimethoprim showed 166%- and 300%-fold increments for antimicrobial activity against Pseudomonas aeruginosa, respectively. Conclusion: The nanosuspension exhibited strong potential as an antimicrobial agent and overcame multidrug resistance.
Collapse
Affiliation(s)
- Nehia N Hussein
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Khalida Al-Azawi
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Ghassan M Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan, 62001, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, 56001, Karbala, Iraq
| | - Reem Ma Al-Majeed
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Baghdad 10066, Iraq
| | - Ali G Al-Dulimi
- Department of Dentistry, Bilad Alrafidain University College, Diyala, 32001, Iraq
| | - Hamdoon A Mohammed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, P.O. Box 31717, Buraydah 51418, Qassim, Saudi Arabia
| | - Razan Alawaji
- Pharmaceutical Care Services, King Salman Medical City, Maternity and Children Hospital, Al Madinah Al Munawwarah 11176, Saudi Arabia
| | - Abdulaziz Arif A Alshammari
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Graduate Student
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
3
|
Saridag AM, Kahraman M. Layer-by-layer coating of natural diatomite with silver nanoparticles for identification of circulating cancer protein biomarkers using SERS. NANOSCALE 2023; 15:13770-13783. [PMID: 37578149 DOI: 10.1039/d3nr02602g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is an emerging spectroscopy technique for detecting and characterizing chemical or biological structures in the vicinity of plasmonic nanostructures. Colloidal, solid, and flexible nanostructures are widely used in SERS experiments to enhance the Raman intensity. The nanostructure used in SERS is one of the main influencing parameters and a growing research area. Fabrication of simple and cheap SERS substrates with a high enhancement factor is desired. In this study, we fabricated a reproducible, cheap, and flexible SERS active strip by coating natural diatomite (biosilica) with silver nanoparticles (AgNPs) using the layer-by-layer assembly method and the fabricated strip is used for the label-free identification of circulating cancer protein biomarkers. SERS active strips were fabricated having different numbers of AgNP layers on natural diatomite and comprehensive characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV/vis absorption spectrophotometry were used. SERS activities of the strips depending on the number of layers were evaluated using 4-aminothiophenol (4-ATP) and rhodamine 6G (Rh6G) molecules. We found that the SERS intensity is strongly dependent on the number of AgNP layers, with the maximum SERS intensity obtained from the strip with 5 layers of AgNPs, having a 2.0 × 105 enhancement factor. The strip with the highest SERS activity was used for the label-free identification of circulating cancer protein biomarkers (HER2, CA15-3, PSA, MUC4, and CA27-29). The results demonstrate that the fabricated strip can help in the effective label-free identification of circulating protein biomarkers and open new directions for SERS-based label-free biosensing applications.
Collapse
Affiliation(s)
- Ayse Mine Saridag
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310, Gaziantep, Turkey.
| | - Mehmet Kahraman
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310, Gaziantep, Turkey.
| |
Collapse
|
4
|
Shafiq A, Deshmukh AR, AbouAitah K, Kim BS. Green Synthesis of Controlled Shape Silver Nanostructures and Their Peroxidase, Catalytic Degradation, and Antibacterial Activity. J Funct Biomater 2023; 14:325. [PMID: 37367289 DOI: 10.3390/jfb14060325] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Nanoparticles with unique shapes have garnered significant interest due to their enhanced surface area-to-volume ratio, leading to improved potential compared to their spherical counterparts. The present study focuses on a biological approach to producing different silver nanostructures employing Moringa oleifera leaf extract. Phytoextract provides metabolites, serving as reducing and stabilizing agents in the reaction. Two different silver nanostructures, dendritic (AgNDs) and spherical (AgNPs), were successfully formed by adjusting the phytoextract concentration with and without copper ions in the reaction system, resulting in particle sizes of ~300 ± 30 nm (AgNDs) and ~100 ± 30 nm (AgNPs). These nanostructures were characterized by several techniques to ascertain their physicochemical properties; the surface was distinguished by functional groups related to polyphenols due to plant extract that led to critical controlling of the shape of nanoparticles. Nanostructures performance was assessed in terms of peroxidase-like activity, catalytic behavior for dye degradation, and antibacterial activity. Spectroscopic analysis revealed that AgNDs demonstrated significantly higher peroxidase activity compared to AgNPs when evaluated using chromogenic reagent 3,3',5,5'-tetramethylbenzidine. Furthermore, AgNDs exhibited enhanced catalytic degradation activities, achieving degradation percentages of 92.2% and 91.0% for methyl orange and methylene blue dyes, respectively, compared to 66.6% and 58.0% for AgNPs. Additionally, AgNDs exhibited superior antibacterial properties against Gram-negative E. coli compared to Gram-positive S. aureus, as evidenced by the calculated zone of inhibition. These findings highlight the potential of the green synthesis method in generating novel nanoparticle morphologies, such as dendritic shape, compared with the traditionally synthesized spherical shape of silver nanostructures. The synthesis of such unique nanostructures holds promise for various applications and further investigations in diverse sectors, including chemical and biomedical fields.
Collapse
Affiliation(s)
- Ayesha Shafiq
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Aarti R Deshmukh
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Khaled AbouAitah
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Beom-Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
5
|
Essghaier B, Dridi R, Mottola F, Rocco L, Zid MF, Hannachi H. Biosynthesis and Characterization of Silver Nanoparticles from the Extremophile Plant Aeonium haworthii and Their Antioxidant, Antimicrobial and Anti-Diabetic Capacities. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010100. [PMID: 36616010 PMCID: PMC9823831 DOI: 10.3390/nano13010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
The present paper described the first green synthesis of silver nanoparticles (AgNPs) from the extremophile plant Aeonium haworthii. The characterization of the biosynthesized silver nanoparticles was carried out by using UV-Vis, FTIR and STM analysis. The antioxidant, antidiabetic and antimicrobial properties were also reported. The newly described AgNPs were spherical in shape and had a size of 35-55 nm. The lowest IC50 values measured by the DPPH assay indicate the superior antioxidant behavior of our AgNPs as opposed to ascorbic acid. The silver nanoparticles show high antidiabetic activity determined by the inhibitory effect of α amylase as compared to the standard Acarbose. Moreover, the AgNPs inhibit bacterial growth owing to a bactericidal effect with the MIC values varying from 0.017 to 1.7 µg/mL. The antifungal action was evaluated against Candida albicans, Candida tropicalis, Candida glabrata, Candida sake and non-dermatophytic onychomycosis fungi. A strong inhibitory effect on Candida factors' virulence was observed as proteinase and phospholipase limitations. In addition, the microscopic observations show that the silver nanoparticles cause the eradication of blastospores and block filamentous morphogenesis. The combination of the antioxidant, antimicrobial and antidiabetic behaviors of the new biosynthesized silver nanoparticles highlights their promising use as natural phytomedicine agents.
Collapse
Affiliation(s)
- Badiaa Essghaier
- Department of Biology, Faculty of Sciences, University of Tunis El-Manar II, Tunis 2092, Tunisia
| | - Rihab Dridi
- Laboratoire de Matériaux Cristallochimie et Thermodynamique Appliquée, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El-Manar II, Tunis 2092, Tunisia
| | - Filomena Mottola
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania L.Vanvitelli, 81100 Caserta, Italy
| | - Lucia Rocco
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania L.Vanvitelli, 81100 Caserta, Italy
| | - Mohamed Faouzi Zid
- Laboratoire de Matériaux Cristallochimie et Thermodynamique Appliquée, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El-Manar II, Tunis 2092, Tunisia
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint LR18ES04, Department of Biology, Faculty of Sciences, University Tunis El-Manar II, Tunis 2092, Tunisia
| |
Collapse
|
6
|
Alsubhi NS, Alharbi NS, Felimban AI. Optimized Green Synthesis and Anticancer Potential of Silver Nanoparticles Using Juniperus procera Extract Against Lung Cancer Cells. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Silver nanoparticles (AgNPs) have been considered promising candidates for medical practices in various fields. This study proposed an efficient, economical, uncomplicated, and reliable method to synthesize AgNPs utilizing leaf and fruit extracts of Juniperus procera (J. procera)
as capping, reducing, and stabilizing agents. The study includes optimizing the green synthesis conditions to produce stable AgNPs with high yields, acceptable particle size, and shape, hence, AgNPs may be used for different medical purposes through the improvement of their properties. Several
spectroscopic and other analyses performed characterization of the fabricated AgNPs, and the results show stable and spherical AgNPs between 14 and 18 nm in size. The study also evaluated the anticancer activities of the biosynthesized AgNPs using J. procera fruit and leaf extracts
against in vitro lung cancer A549 and H1975 cells. The results demonstrate the high toxicity of the biosynthesized AgNPs against in vitro lung cancer cells, supporting therapeutic and biomedical applications of AgNPs.
Collapse
Affiliation(s)
- Nehad S. Alsubhi
- Department of Biology, Collage of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Njud S. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Afnan I. Felimban
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
7
|
Green synthesized silver nanoparticles-impregnated novel gum kondagogu–chitosan biosheet for tissue engineering and wound healing applications. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Green synthesis and anticancer activity of silver nanoparticles prepared using fruit extract of Azadirachta indica. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Nithya P, Raghunathan S, Prabakaran M, Antony SA, MubarakAli D. Synthesis and Characterization of Tween-20 Capped Biosynthesized Silver Nanoparticles for Anticancer and Antimicrobial Property. Appl Biochem Biotechnol 2022; 195:2282-2293. [PMID: 35802241 DOI: 10.1007/s12010-022-04069-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
The Vitrus vinifera fruit extract was used to make silver nanoparticles (AgNPs) utilizing a green chemical technique. The biosynthesized Tween-20/Vitrus vinifera-AgNPs were observed by UV-Vis spectrophotometry. Fourier transform infrared spectroscopy, scanning transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray spectroscopy were used to characterize the physiochemical properties. The spherical form of AgNPs was confirmed by transmission electron microscopy. The peaks in the Tween-20/Vitrus vinifera-AgNPs have an average crystallite size that is found to be 46 nm according to powder X-ray diffraction examination. Biosynthesized AgNPs had a significant effect on bone osteosarcoma MG63 cells with 55% inhibition, respectively, using MTT assay. The effective dangerous concentration of Tween-20/Vitrus vinifera with AgNP nanoparticles was less harmful to MG63 cells. The results of antibacterial activity showed that Tween-20/Vitrus vinifera-AgNPs effectively inhibited Eggerthella lenta and Staphylococcus epidermis bacteria.
Collapse
Affiliation(s)
- Periakaruppan Nithya
- PG and Research Department of Chemistry, Presidency College, Chennai, 600005, India
| | - Sathya Raghunathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Muthusamy Prabakaran
- PG and Research Department of Chemistry, Presidency College, Chennai, 600005, India
| | | | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
- Al Siraat Labs Private Limited, Seethakathi Estate, Chennai, 600048, India.
| |
Collapse
|
10
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
11
|
Abdulrahman MD, Zakariya AM, Hama HA, Hamad SW, Al-Rawi SS, Bradosty SW, Ibrahim AH. Ethnopharmacology, Biological Evaluation, and Chemical Composition of Ziziphus spina- christi (L.) Desf.: A Review. Adv Pharmacol Pharm Sci 2022; 2022:4495688. [PMID: 35677711 PMCID: PMC9168210 DOI: 10.1155/2022/4495688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
Medicinal plants are the primary raw materials used in the production of medicinal products all over the world. As a result, more study on plants with therapeutic potential is required. The tropical tree Ziziphus spina belongs to the Rhamnaceae family. Biological reports and traditional applications including management of diabetes and treatment of malaria, digestive issues, typhoid, liver complaints, weakness, skin infections, urinary disorders, obesity, diarrhoea, and sleeplessness have all been treated with different parts of Z. spina all over the globe. The plant is identified as a rich source of diverse chemical compounds. This study is a comprehensive yet detailed review of Z. spina based on major findings from around the world regarding ethnopharmacology, biological evaluation, and chemical composition. Scopus, Web of Science, BioMed Central, ScienceDirect, PubMed, Springer Link, and Google Scholar were searched to find published articles. From the 186 research articles reviewed, we revealed the leaf extract to be significant against free radicals, microbes, parasites, inflammation-related cases, obesity, and cancer. Chemically, polyphenols/flavonoids were the most reported compounds with a composition of 66 compounds out of the total 193 compounds reported from different parts of the plant. However, the safety and efficacy of Z. spina have not been wholly assessed in humans, and further well-designed clinical trials are needed to corroborate preclinical findings. The mechanism of action of the leaf extract should be examined. The standard dose and safety of the leaf should be established.
Collapse
Affiliation(s)
- Mahmoud Dogara Abdulrahman
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Ali Muhammad Zakariya
- Institute of Biological Sciences, University Malaya, Kuala Lumpur, Malaysia
- Department of Biological Sciences, Sule Lamido University Kafin Hausa, Jigawa State, Nigeria
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Saber W. Hamad
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
- Department of Field Crops, College of Agricultural Engineering Sciences, Salahaddin University, Erbil, Kurdistan Region, Iraq
| | - Sawsan S. Al-Rawi
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Sarwan W. Bradosty
- Department of Community Health, College of Health Technology, Cihan University, Erbil, Kurdistan Region, Iraq
| | - Ahmad H. Ibrahim
- Pharmacy Department, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
12
|
Assessment of the Therapeutic Efficacy of Silver Nanoparticles against Secondary Cystic Echinococcosis in BALB/c Mice. SURFACES 2022. [DOI: 10.3390/surfaces5010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background: Cystic echinococcosis (CE) is a highly prevalent parasitic disease resulting from the hydatid cyst of Echinococcus granulosus. It is also described as a zoonotic disease and considered a neglected tropical infection. Aim: This study assessed the antiparasitic activity of silver nanoparticles (AgNPs), against E. granulosus infection in BALB/c mice. Methods: The green synthesis of AgNPs was accomplished using Zizyphus spina-christi leaves. AgNPs were orally administered to BALB/c mice for acute short-term toxicity evaluation, in doses of 50 mg, 100 mg, 200 mg, and 300 mg/kg, and observations for toxic signs were carried out at 24, 48 h, and 14 days, continuously. Moreover, a total of 20 mice divided into two groups were intraperitoneally administered with 1500 viable protoscoleces for secondary hydatidosis infection. Results: The results showed that AgNPs did not induce any adverse effects or signs and no death, in either group of mice. The histopathological findings in the liver, kidneys, and intestine of the mice administered with AgNPs revealed mild histological effects compared with the control ones. The treated-infected mice showed a change in the appearance of the liver hydatid cysts from hyaline to milky cloudy compared with the untreated infected mice. Conclusion: Biosynthesized AgNPs showed anti-hydatic effects and are suggested as anti-echinococcal cyst treatment.
Collapse
|
13
|
Zhang J, Liu J, Yan H, Wang X, Dong H. Novel Approach of Phyto-Mediated Thermo-Sensitive and Biocompatible Nano-Formulation to Improve Anti-Microbial Efficacy Against Pathogenic Bacterial for the Treatment of Wound Infections. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Design and development of novel methods for the synthesis of metal nanopartilces (MNPs) was greatly attracted by research community due to various applications. We described a greener strategy for the synthesis of silver nanoformulation (Ag NF) using leaf extract of Ziziphus zizyphus
and then surface functionalized using P(NIPAM-co-MQ). The synthesized AgNPs were characterized by UV-visible spectroscopy and Transmission electron microscopy. Further, the functionalized AgNPs were characterized XPS and x-ray diffraction studies. The design of bioactive and biocompatible
Ag nanoformulation preparations have been provide promising alternative source for bacterial-related therapies. The developed Ag NF have demonstrated predominant bactericidal action with highinhibition rate and long-term efficiency against clinically approved bacterial pathogens (S. aureus
and E. coli), which greatly contributed treatment of wound infections. The observations of the present study could provide new avenue for the antimicrobial treatment of wound therapy
Collapse
Affiliation(s)
- Jing Zhang
- Ophthalmic Clinic, Qingdao Municipal Hospital, 266071, PR China
| | - Jie Liu
- Section for Outpatients, Qingdao Municipal Hospital, 266071, PR China
| | - Hui Yan
- Operating Room, Wulian People’s Hospital, 262399, PR China
| | - Xuyu Wang
- Ophthalmic Clinic, Qingdao Municipal Hospital, 266071, PR China
| | - Huiyan Dong
- Department of Gastroenterology, Affiliated Hospital of Jining Medical College, 272007, PR China
| |
Collapse
|
14
|
Synthesis, Characterization, and Optimization of Green Silver Nanoparticles Using Neopestalotiopsis clavispora and Evaluation of Its Antibacterial, Antibiofilm, and Genotoxic Effects. EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Silver nanoparticles (AgNPs) have been used in a variety of biomedical applications in the last two decades, including antimicrobial, anti-inflammatory, and anticancer treatments. The present study highlights the extracellular synthesis of silver nanoparticles AgNPs using Neopestalotiopsis clavispora MH244410.1 and its antibacterial, antibiofilm, and genotoxic properties. Locally isolated N. clavispora MH244410.1 was identified by Internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. Optimization of synthesized AgNPs was performed by using various parameters (pH (2, 4, 7, 9 and 12), temperature (25, 35 and 45 °C), and substrate concentration (0.05, 0.1, 0.15, 0.2 and 0.25 mM)). After 72 hours of incubation in dark conditions, the best condition for the biosynthesis of AgNPs was determined as 0.25 mM metal concentration at pH 12 and 35 °C. Fungal synthesized AgNPs were characterized via spectroscopic and microscopic techniques such as Fouirer Transform Infrared Spectrophotometer (FTIR), UV-Visible Spectroscopy, and Transmission Electron Microscopy (TEM). The average size of the AgNPs was determined less than 60 nm using the TEM and Zetasizer measurement system (measured in purity water suspension). The characteristic peak of AgNPs was observed at ~414 nm from UV-Vis results. Antibacterial and genotoxic activity of synthesized AgNPs (0.1, 1, and 10 ppm) were also determined by using the agar well diffusion method and in vivo Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster. AgNPs exhibited potential antimicrobial activity against all the tested bacteria (Bacillus subtilis, Staphylococcus aureus, and Pseudomonas aeruginosa) except Escherichia coli in a dose-dependent manner. AgNPs did not induce genotoxicity in the Drosophila SMART assay. 79.33, 65.47, and 41.95% inhibition of biofilms formed by P. aeruginosa were observed at 10, 1, and 0.1 ppm of AgNPs, respectively. The overall results indicate that N. clavispora MH244410.1 is a good candidate for novel applications in biomedical research.
Collapse
|
15
|
Alharthi MN, Ismail I, Bellucci S, Khdary NH, Abdel Salam M. Biosynthesis Microwave-Assisted of Zinc Oxide Nanoparticles with Ziziphus jujuba Leaves Extract: Characterization and Photocatalytic Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1682. [PMID: 34206802 PMCID: PMC8307762 DOI: 10.3390/nano11071682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
The present work is intended to biosynthesize zinc oxide nanoparticles (ZnO NPs) via facile and modern route using aqueous Ziziphus jujuba leaves extract assisted by microwave and explore their photocatalytic degradation of methyl orange anionic dye and methylene blue cationic dye under solar irradiation. The biosynthesized microwave assisted ZnO NPs were characterized and the results showed that ZnO NPs contain hexagonal wurtzite and characterized with a well-defined spherical-like shape with an outstanding band gap (2.70 eV), average particle size of 25 nm and specific surface area of 11.4 m2/g. The photocatalytic degradation of the MO and MB dyes by biosynthesized ZnO NPs under solar irradiation was studied and the results revealed the selective nature of the ZnO NPs for the adsorption and further photocatalytic degradation of the MO dye compared to the MB dye. In addition, the photocatalytic degradation of MO and MB dyes by the ZnO NPs under solar radiation was fitted by the first-order kinetics. Moreover, the photodegradation mechanism proposed that superoxide ions and hydroxyl radicals are the main reactive species.
Collapse
Affiliation(s)
- Maymounah N. Alharthi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (M.N.A.); (I.I.)
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Iqbal Ismail
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (M.N.A.); (I.I.)
| | - Stefano Bellucci
- National Laboratories of Frascati, National Institute of Nuclear Physics, I-00044 Frascati, Italy;
| | - Nezar H. Khdary
- King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (M.N.A.); (I.I.)
| |
Collapse
|
16
|
Saman S, Balouch A, Talpur FN, Memon AA, Mousavi BM, Verpoort F. Green synthesis of MgO nanocatalyst by using
Ziziphus mauritiana
leaves and seeds for biodiesel production. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Syed Saman
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | - Aamna Balouch
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | - Farah Naz Talpur
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry University of Sindh Jamshoro Pakistan
| | - Bibi Maryam Mousavi
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Francis Verpoort
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- National Research Tomsk Polytechnic University Tomsk Russian Federation
- Ghent University‐Global Campus Songdo Incheon South Korea
| |
Collapse
|
17
|
Ahsan A, Farooq MA, Ahsan Bajwa A, Parveen A. Green Synthesis of Silver Nanoparticles Using Parthenium Hysterophorus: Optimization, Characterization and In Vitro Therapeutic Evaluation. Molecules 2020; 25:molecules25153324. [PMID: 32707950 PMCID: PMC7435648 DOI: 10.3390/molecules25153324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 01/31/2023] Open
Abstract
Traditional synthetic techniques for silver nanoparticles synthesis involve toxic chemicals that are harmful to humans as well as the environment. The green chemistry method for nanoparticle synthesis is rapid, eco-friendly, and less toxic as compared to the traditional methods. In the present research, we synthesized silver nanoparticles employing a green chemistry approach from Parthenium hysterophorus leaf extract. The optimized parthenium silver nanoparticles (PrSNPs) had a mean particle size of 187.87 ± 4.89 nm with a narrow size distribution of 0.226 ± 0.009 and surface charge −34 ± 3.12 mV, respectively. The physicochemical characterization of optimized SNPs was done by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the transmission electron microscopy (TEM) analysis indicates the spherical shape of NPs with an average diameter of 20–25 nm. PrSNPs were investigated for in vitro antibacterial, antifungal, anti-inflammatory, and antioxidant properties, and showed excellent profiles. The cytotoxic activity was analyzed against two cancer cell lines, i.e., B16F10 and HepG2 for 24 h and 48 h. PrSNPs proved to be an excellent anticancer agent. These PrSNPs were also employed for the treatment of wastewater by monitoring the E. coli count, and it turned out to be reduced by 58%; hence these NPs could be used for disinfecting water. Hence, we can propose that PrSNPs could be a suitable candidate as an antimicrobial, antioxidant, anti-inflammatory, and antitumor agent for the treatment of several ailments.
Collapse
Affiliation(s)
- Anam Ahsan
- College of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China;
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211100 Nanjing, China;
| | - Ali Ahsan Bajwa
- Weeds Research Unit, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| | - Amna Parveen
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu Incheon 406–799, Korea
- Correspondence: ; Tel.: +82-10-5925-2733
| |
Collapse
|
18
|
Eco-friendly “green” synthesis of silver nanoparticles with the black currant pomace extract and its antibacterial, electrochemical, and antioxidant activity. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01369-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Abdalla SSI, Katas H, Azmi F, Busra MFM. Antibacterial and Anti-Biofilm Biosynthesised Silver and Gold Nanoparticles for Medical Applications: Mechanism of Action, Toxicity and Current Status. Curr Drug Deliv 2020; 17:88-100. [DOI: 10.2174/1567201817666191227094334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/07/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023]
Abstract
Fast progress in nanoscience and nanotechnology has contributed to the way in which people diagnose, combat, and overcome various diseases differently from the conventional methods. Metal nanoparticles, mainly silver and gold nanoparticles (AgNPs and AuNPs, respectively), are currently developed for many applications in the medical and pharmaceutical area including as antibacterial, antibiofilm as well as anti-leshmanial agents, drug delivery systems, diagnostics tools, as well as being included in personal care products and cosmetics. In this review, the preparation of AgNPs and AuNPs using different methods is discussed, particularly the green or bio- synthesis method as well as common methods used for their physical and chemical characterization. In addition, the mechanisms of the antimicrobial and anti-biofilm activity of AgNPs and AuNPs are discussed, along with the toxicity of both nanoparticles. The review will provide insight into the potential of biosynthesized AgNPs and AuNPs as antimicrobial nanomaterial agents for future use.
Collapse
Affiliation(s)
- Sundos Suleman Ismail Abdalla
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Mohd Fauzi Mh Busra
- Tissue Engineering Centre, UKM Medical Centre, 56000, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Carbohydrate polymer-based silver nanocomposites: Recent progress in the antimicrobial wound dressings. Carbohydr Polym 2020; 231:115696. [DOI: 10.1016/j.carbpol.2019.115696] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 02/08/2023]
|
21
|
Alheety NF, Majeed AH, Alheety MA. Silver Nanoparticles Anchored 5-methoxy benzimidazol thiomethanol (MBITM): Modulate, Characterization and Comparative Studies on MBITM and Ag-MBITM Antibacterial Activities. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1742-6596/1294/5/052026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Guimarães ML, da Silva FAG, da Costa MM, de Oliveira HP. Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01181-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Al-Zahrani SS, Al-Garni SM. Biosynthesis of Silver Nanoparticles from <i>Allium ampeloprasum</i> Leaves Extract and Its Antifungal Activity. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/jbnb.2019.101002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Mousavi-Khattat M, Keyhanfar M, Razmjou A. A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S1022-S1031. [PMID: 30449178 DOI: 10.1080/21691401.2018.1527346] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Silver nanoparticles have a wide range of research, industrial and biomedical applications that make it essential to develop a low cost and eco-friendly approach with scaling up potential. Green synthesis of nanoparticles through bio-reactions leads to a reduction of silver ions to particles could be an acceptable selection using no additional reducing chemicals. Moreover, the simplicity of scale-up processes of the method makes it more efficient than chemical and physical synthesis methods. In this study, Datura stramonium leaf extract and sodium citrate were used as biological and chemical reducing and stabilizing agents to make silver nanoparticles. The main goal is to comprise properties and evaluate antibacterial activity of nanoparticles synthesized through two approaches. Size and morphology compared between the two types of the synthesized nanoparticle by UV-Visible spectroscopy, DLS, AFM, TEM and their antibacterial effects were evaluated through growth inhibition MIC and MBC methods. The results showed narrow size range, spherical shape, high anti-oxidant, antibacterial and DNA cleavage activities of green synthesized silver nanoparticles comparing to less average size, wider range of nanoparticle size, no anti-oxidant activity and less antibacterial and DNA cleavage activities of chemically synthesized nanoparticles. The green synthesized silver nanoparticles had more desirable characteristics and biological activities compared to chemically synthesized nanoparticles. For instance, the green nanoparticles showed narrow size range, spherical shape, high anti-oxidant, antibacterial and DNA cleavage activities versus the chemically synthesized which had less average size, higher range of nanoparticles size, no anti-oxidant activity and less antibacterial and DNA cleavage activities.
Collapse
Affiliation(s)
| | - Mehrnaz Keyhanfar
- a Department of Biotechnology , University of Isfahan , Isfahan , Iran
| | - Amir Razmjou
- a Department of Biotechnology , University of Isfahan , Isfahan , Iran
| |
Collapse
|
25
|
Kang JP, Kim YJ, Singh P, Huo Y, Soshnikova V, Markus J, Ahn S, Chokkalingam M, Lee HA, Yang DC. Biosynthesis of gold and silver chloride nanoparticles mediated by Crataegus pinnatifida fruit extract: in vitro study of anti-inflammatory activities. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1530-1540. [PMID: 28918663 DOI: 10.1080/21691401.2017.1376674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This research article investigates the one-pot synthesis of gold and silver chloride nanoparticles functionalized by fruit extract of Crataegus pinnatifida as reducing and stabilizing agents and their possible roles as novel anti-inflammatory agents. Hawthorn (C. pinnatifida) fruits are increasingly popular as raw materials for functional foods and anti-inflammatory potential agents because of abundant flavonoids. The reduction of auric chloride and silver nitrate by the aqueous fruit extract led to the formation of gold and silver chloride nanoparticles. The nanoparticles were further characterized by field emission transmission electron microscopy indicated that CP-AuNps and CP-AgClNps were hexagonal and cubic shape, respectively. According to X-ray diffraction results, the average crystallite sizes of CP-AuNps and CP-AgClNps were 14.20 nm and 24.80 nm. The biosynthesized CP-AgClNps served as efficient antimicrobial agents against Escherichia coli and Staphylococcus aureus. Furthermore, CP-AuNps and CP-AgClNps enhanced the DPPH radical scavenging activity of the fruit extract. Lastly, MTT assay of nanoparticles demonstrated low toxicity in murine macrophage (RAW264.7). Biosynthesized nanoparticles also reduced the production of the inflammatory cytokines including nitric oxide and prostaglandin E2 in lipopolysaccharide-induced RAW264.7 cells. Altogether, these findings suggest that CP-AuNps and CP-AgClNps can be used as novel drug carriers or biosensors with intrinsic anti-inflammatory activity.
Collapse
Affiliation(s)
- Jong Pyo Kang
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Yeon Ju Kim
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Priyanka Singh
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Yue Huo
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Veronika Soshnikova
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Josua Markus
- b Graduate School of Biotechnology and Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Sungeun Ahn
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Mohan Chokkalingam
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Hyun A Lee
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| | - Deok Chun Yang
- a Department of Oriental Medicinal Biotechnology, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea.,b Graduate School of Biotechnology and Ginseng Bank, College of Life Science , Kyung Hee University , Yongin-si , Republic of Korea
| |
Collapse
|