1
|
Sledziona J, Burikhanov R, Araujo N, Jiang J, Hebbar N, Rangnekar VM. The Tumor Suppressor Par-4 Regulates Adipogenesis by Transcriptional Repression of PPARγ. Cells 2024; 13:1495. [PMID: 39273065 PMCID: PMC11393870 DOI: 10.3390/cells13171495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate apoptosis response-4 (Par-4, also known as PAWR) is a ubiquitously expressed tumor suppressor protein that induces apoptosis selectively in cancer cells, while leaving normal cells unaffected. Our previous studies indicated that genetic loss of Par-4 promoted hepatic steatosis, adiposity, and insulin-resistance in chow-fed mice. Moreover, low plasma levels of Par-4 are associated with obesity in human subjects. The mechanisms underlying obesity in rodents and humans are multi-faceted, and those associated with adipogenesis can be functionally resolved in cell cultures. We therefore used pluripotent mouse embryonic fibroblasts (MEFs) or preadipocyte cell lines responsive to adipocyte differentiation cues to determine the potential role of Par-4 in adipocytes. We report that pluripotent MEFs from Par-4-/- mice underwent rapid differentiation to mature adipocytes with an increase in lipid droplet accumulation relative to MEFs from Par-4+/+ mice. Knockdown of Par-4 in 3T3-L1 pre-adipocyte cultures by RNA-interference induced rapid differentiation to mature adipocytes. Interestingly, basal expression of PPARγ, a master regulator of de novo lipid synthesis and adipogenesis, was induced during adipogenesis in the cell lines, and PPARγ induction and adipogenesis caused by Par-4 loss was reversed by replenishment of Par-4. Mechanistically, Par-4 downregulates PPARγ expression by directly binding to its upstream promoter, as judged by chromatin immunoprecipitation and luciferase-reporter studies. Thus, Par-4 transcriptionally suppresses the PPARγ promoter to regulate adipogenesis.
Collapse
Affiliation(s)
- James Sledziona
- Department of Toxicology and Cancer Biology, University of Kentucky, 538 Healthy Kentucky Research Building, 760 Press Avenue, Lexington, KY 40536, USA
- The Ohio State University James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | - Nathalia Araujo
- Department of Toxicology and Cancer Biology, University of Kentucky, 538 Healthy Kentucky Research Building, 760 Press Avenue, Lexington, KY 40536, USA
| | - Jieyun Jiang
- Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Nikhil Hebbar
- Department of Toxicology and Cancer Biology, University of Kentucky, 538 Healthy Kentucky Research Building, 760 Press Avenue, Lexington, KY 40536, USA
| | - Vivek M Rangnekar
- Department of Toxicology and Cancer Biology, University of Kentucky, 538 Healthy Kentucky Research Building, 760 Press Avenue, Lexington, KY 40536, USA
- Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA
- Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
2
|
Abstract
INTRODUCTION Despite extensive research, cancer continues to be a leading cause of death worldwide and is expected to continue to rise as a result of an aging population. Therefore, new therapies are constantly being developed. Par-4 is a naturally occurring tumor suppressor protein that is capable of inducing apoptosis in cancer, but not normal cells. For this reason, Par-4 offers an attractive target for development of cancer therapy, particularly of difficult to treat cancers. AREAS COVERED The mechanisms by which Par-4 induces cell death are summarized. The ways that Par-4 is controlled in cancer cells are discussed. We discuss how different research groups have developed ways to overexpress and/or activate Par-4 in vitro and in vivo. The studies described demonstrate that when Par-4 levels and/or activity are increased, susceptibility to apoptosis is enhanced and tumor growth is inhibited. EXPERT OPINION Par-4 is a promising therapeutic protein that can be overexpressed and/or activated to induce apoptosis in a cancer-selective manner. This cancer selectivity is important given that the side-effects of chemotherapeutics can be as debilitating as cancer itself. However, there are key issues that need to be addressed to optimize the effects of Par-4 in patients.
Collapse
Affiliation(s)
- Rosalyn B Irby
- Penn State Hershey Cancer Institute, 500 University Drive, Hershey, PA 17033, USA.
| | | |
Collapse
|