1
|
Kumar D, Krull C, Yin Y, Medhekar NV, Schiffrin A. Electric Field Control of Molecular Charge State in a Single-Component 2D Organic Nanoarray. ACS NANO 2019; 13:11882-11890. [PMID: 31584795 DOI: 10.1021/acsnano.9b05950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantum dots (QD) with electric-field-controlled charge state are promising for electronics applications, e.g., digital information storage, single-electron transistors, and quantum computing. Inorganic QDs consisting of semiconductor nanostructures or heterostructures often offer limited control on size and composition distribution as well as low potential for scalability and/or nanoscale miniaturization. Owing to their tunability and self-assembly capability, using organic molecules as building nanounits can allow for bottom-up synthesis of two-dimensional (2D) nanoarrays of QDs. However, 2D molecular self-assembly protocols are often applicable on metals surfaces, where electronic hybridization and Fermi level pinning can hinder electric-field control of the QD charge state. Here, we demonstrate the synthesis of a single-component self-assembled 2D array of molecules [9,10-dicyanoanthracene (DCA)] that exhibit electric-field-controlled spatially periodic charging on a noble metal surface, Ag(111). The charge state of DCA can be altered (between neutral and negative), depending on its adsorption site, by the local electric field induced by a scanning tunneling microscope tip. Limited metal-molecule interactions result in an effective tunneling barrier between DCA and Ag(111) that enables electric-field-induced electron population of the lowest unoccupied molecular orbital (LUMO) and, hence, charging of the molecule. Subtle site-dependent variation of the molecular adsorption height translates into a significant spatial modulation of the molecular polarizability, dielectric constant, and LUMO energy level alignment, giving rise to a spatially dependent effective molecule-surface tunneling barrier and likelihood of charging. This work offers potential for high-density 2D self-assembled nanoarrays of identical QDs whose charge states can be addressed individually with an electric field.
Collapse
Affiliation(s)
- Dhaneesh Kumar
- School of Physics & Astronomy , Monash University , Clayton , Victoria 3800 , Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies , Monash University , Clayton , Victoria 3800 , Australia
| | - Cornelius Krull
- School of Physics & Astronomy , Monash University , Clayton , Victoria 3800 , Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies , Monash University , Clayton , Victoria 3800 , Australia
| | - Yuefeng Yin
- School of Physics & Astronomy , Monash University , Clayton , Victoria 3800 , Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies , Monash University , Clayton , Victoria 3800 , Australia
- Department of Materials Science and Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Nikhil V Medhekar
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies , Monash University , Clayton , Victoria 3800 , Australia
- Department of Materials Science and Engineering , Monash University , Clayton , Victoria 3800 , Australia
| | - Agustin Schiffrin
- School of Physics & Astronomy , Monash University , Clayton , Victoria 3800 , Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|
2
|
Pérez Medina Martínez V, Espinosa-de la Garza CE, Méndez-Silva DA, Bolívar-Vichido M, Flores-Ortiz LF, Pérez NO. Nanoparticles for Protein Sensing in Primary Containers: Interaction Analysis and Application. AAPS PharmSciTech 2018. [PMID: 29520588 DOI: 10.1208/s12249-018-0983-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Silver nanoparticles (AgNPs) are known to interact with proteins, leading to modifications of the plasmonic absorption that can be used to monitor this interaction, entailing a promising application for sensing adsorption of therapeutic proteins in primary containers. First, transmission electron microscopy in combination with plasmonic absorption and light scattering responses were used to characterize AgNPs and protein-AgNP complexes, including its concentration dependence, using two therapeutic molecules as models: a monoclonal antibody (mAb) and a synthetic copolymer (SC). Upon interaction, a protein corona was formed around AgNPs with the consequent shifting and broadening of their characteristic surface plasmon resonance (SPR) band (400 nm) to 410 nm and longer wavelenghts. Additional studies revealed secondary and three-dimensional structure modifications of model proteins upon interaction with AgNPs by circular dichroism and fluorescence techniques, respectively. Based on the modification of the SPR condition of AgNPs upon interaction with proteins, we developed a novel protein-sensing application of AgNPs in primary containers. This strategy was used to conduct a compatibility assessment of model proteins towards five commercially available prefillable glass syringe (PFS) models. mAb- and SC-exposed PFSs showed that 74 and 94% of cases were positive for protein adsorption, respectively. Interestingly, protein adsorption on 15% of total tested PFSs was negligible (below the nanogram level). Our results highlight the need of a case-by-case compatibility assessment of therapeutic proteins and their primary containers. This strategy has the potential to be easily applied on other containers and implemented during early-stage product development by pharmaceutical companies and for routine use during batch release by packaging manufacturers.
Collapse
|
3
|
Abbandonato G, Hoffmann K, Resch-Genger U. Determination of quantum yields of semiconductor nanocrystals at the single emitter level via fluorescence correlation spectroscopy. NANOSCALE 2018; 10:7147-7154. [PMID: 29616686 DOI: 10.1039/c7nr09332b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Comparing the photoluminescence (PL) properties of ensembles of nanocrystals like semiconductor quantum dots (QDs) with single particle studies is of increasing interest for many applications of these materials as reporters in bioimaging studies performed under very dilute conditions or even at the single particle level. Particularly relevant is here the PL quantum yield (ΦF), which determines the signal size together with the reporter's molar extinction coefficient and is a direct measure for nanocrystal quality, especially for the inorganic surface passivation shell and its tightness, which can be correlated also with nanocrystal stability and the possible release of heavy metal ions. Exemplarily for red and green emitting CdTe nanocrystals, we present a method for the determination of ΦF of nanoparticle dispersions at ultralow concentration compared to cuvette measurements using fluorescence correlation spectroscopy (FCS), a single molecule method, and compared to molecular dyes with closely matching spectral properties and known ΦF. Our results underline the potential of this approach, provided that material-inherent limitations like ligand- and QD-specific aggregation affecting particle diffusion and QD drawbacks such as their complex and power-dependent blinking behavior are properly considered as shown here.
Collapse
Affiliation(s)
- Gerardo Abbandonato
- Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany.
| | | | | |
Collapse
|
4
|
Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N, Shuang B, Landes CF. Single Particle Tracking: From Theory to Biophysical Applications. Chem Rev 2017; 117:7331-7376. [PMID: 28520419 DOI: 10.1021/acs.chemrev.6b00815] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
After three decades of developments, single particle tracking (SPT) has become a powerful tool to interrogate dynamics in a range of materials including live cells and novel catalytic supports because of its ability to reveal dynamics in the structure-function relationships underlying the heterogeneous nature of such systems. In this review, we summarize the algorithms behind, and practical applications of, SPT. We first cover the theoretical background including particle identification, localization, and trajectory reconstruction. General instrumentation and recent developments to achieve two- and three-dimensional subdiffraction localization and SPT are discussed. We then highlight some applications of SPT to study various biological and synthetic materials systems. Finally, we provide our perspective regarding several directions for future advancements in the theory and application of SPT.
Collapse
Affiliation(s)
- Hao Shen
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Lawrence J Tauzin
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Rashad Baiyasi
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Wenxiao Wang
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Nicholas Moringo
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Bo Shuang
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Christy F Landes
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| |
Collapse
|
5
|
Surface functionalization of quantum dots for biological applications. Adv Colloid Interface Sci 2015; 215:28-45. [PMID: 25467038 DOI: 10.1016/j.cis.2014.11.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/25/2014] [Accepted: 11/10/2014] [Indexed: 01/17/2023]
Abstract
Quantum dots are a group of inorganic nanomaterials exhibiting exceptional optical and electronic properties which impart distinct advantages over traditional fluorescent organic dyes in terms of tunable broad excitation and narrow emission spectra, signal brightness, high quantum yield and photo-stability. Aqueous solubility and surface functionalization are the most common problems for QDs employed in biological research. This review addresses the recent research progress made to improve aqueous solubility, functionalization of biomolecules to QD surface and the poorly understood chemistry involved in the steps of bio-functionalization of such nanoparticles.
Collapse
|