1
|
van den Berg L, Toja Ortega S, van Loosdrecht MC, de Kreuk MK. Diffusion of soluble organic substrates in aerobic granular sludge: Effect of molecular weight. WATER RESEARCH X 2022; 16:100148. [PMID: 35814501 PMCID: PMC9263526 DOI: 10.1016/j.wroa.2022.100148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Aerobic granular sludge (AGS) is an advanced biofilm-based technology for wastewater treatment. Diffusion of substrates into the granules is a key aspect of this technology. Domestic wastewater contains soluble organic substrates of different sizes that could potentially diffuse into the granules. In this study, the relation between the molecular weight of a substrate and its diffusion coefficient within the granule was studied with model substrates (polyethylene glycols (PEGs) with a molecular weight between 62 and 10 000 Da). The diffusion coefficients of the model substrates within granules from a full-scale installation were measured with the 'transient uptake of a non-reactive solute' method. The diffusion coefficients in the granules were not significantly different from the diffusion coefficients in water, at least up to 4000 Da molecular weight. This indicates that these PEGs were not obstructed by the granule matrix. The 10 kDa PEG behaved differently from the lighter PEGs, as it could not penetrate the entire granule. Furthermore, the granule structure was characterized with Environmental Scanning Electron Microscopy (ESEM). The granules displayed an open structure with large macropores and semi-solid regions, which contained microbial cells. The diffusion results suggest that most diffusing molecules were unobstructed in the macropores and barely obstructed in the semi-solid regions. Only the diffusion of the 10 kDa PEG seemed to be hindered by the semi-solid regions, but not by the macropores. Lastly, the apparent molecular weight distribution of domestic wastewater soluble COD was determined with ultrafiltration membranes of 100, 10, and 1 kDa molecular weight cut-off. The influent fractionation revealed that a large part (61-69%) of the influent soluble COD was lighter than 1 kDa. As molecules lighter than 1 kDa diffuse easily, the majority of the influent soluble COD can be considered as diffusible COD. These findings provide new insight into the availability of influent COD for granular sludge.
Collapse
Affiliation(s)
- Lenno van den Berg
- Department of Water Management, Delft University of Technology, the Netherlands
| | - Sara Toja Ortega
- Department of Water Management, Delft University of Technology, the Netherlands
| | | | - Merle K. de Kreuk
- Department of Water Management, Delft University of Technology, the Netherlands
| |
Collapse
|
2
|
Morphological, rheological and thermal characteristics of biopolymeric microcapsules loaded with plant stimulants. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03057-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Liu Y, Nisisako T. Microfluidic generation of monodispersed Janus alginate hydrogel microparticles using water-in-oil emulsion reactant. BIOMICROFLUIDICS 2022; 16:024101. [PMID: 35282035 PMCID: PMC8896892 DOI: 10.1063/5.0077916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Microparticles with uniform anisotropic structures are widely used in physical, chemical, and biological fields owing to their ability to combine multiple functions on a micro-scale. Here, a microfluidic emulsion-based external gelation method was demonstrated for the first time to produce monodisperse Janus calcium alginate (Ca-alginate) hydrogel microparticles consisting of two compartments. This approach provided a fast reaction condition under which we could prepare magnetic Janus Ca-alginate microparticles with diameters ranging from 148 to 179 μm and a coefficient of variation (CV) less than 4%. Moreover, the boundaries between the two compartments were clear. In addition, the volume fraction of each compartment could be adjusted by varying the flow rate ratio between two dispersed phases. Next, we produced fluorescent Janus beads and magnetic-fluorescent Janus beads with an average diameter of ∼150 μm (CV < 4.0%). The magnetic Janus hydrogel microparticles we produced could be manipulated by applying a magnetic field to achieve self-assembly, rotation, and accumulation. Magnetic Janus hydrogel microparticles are also capable of mammalian cell encapsulation with good cell viability. This article presents a simple and stable approach for producing monodisperse bi-compartmental Janus hydrogel microparticles that could have great potential for application in physical, biochemical, and biomedical fields.
Collapse
Affiliation(s)
- Yingzhe Liu
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Takasi Nisisako
- Institute of Innovative Research, Tokyo Institute of Technology, R2-9, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
4
|
Hadsell A, Chau H, Barber R, Kim U, Mobed-Miremadi M. Supervised Learning for Predictive Pore Size Classification of Regenerated Cellulose Membranes Based on Atomic Force Microscopy Measurements. MATERIALS 2021; 14:ma14216724. [PMID: 34772244 PMCID: PMC8588053 DOI: 10.3390/ma14216724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Nanoporous dialysis membranes made of regenerated cellulose are used as molecular weight cutoff standards in bioseparations. In this study, mesoporous standards with Stokes' radii (50 kDa/2.7 nm, 100 kDa/3.4 nm and 1000 kDa/7.3 nm) and overlapping skewed distributions were characterized using AFM, with the specific aim of generating pore size classifiers for biomimetic membranes using supervised learning. Gamma transformation was used prior to conducting discriminant analysis in terms of the area under the receiver operating curve (AUC) and classification accuracy (Acc). Monte Carlo simulations were run to generate datasets (n = 10) on which logistic regression was conducted using a constant ratio of 80:20 (measurement:algorithm training), followed by algorithm validation by WEKA. The proposed algorithm can classify the 1000 kDa vs. 100 kDa (AUC > 0.8) correctly, but discrimination is weak for the 100 kDa vs. 50 kDa (AUC < 0.7), the latter being attributed to the instrument accuracy errors below 5 nm. As indicated by the results of the cross-validation study, a test size equivalent to 70% (AUCtapping = 0.8341 ± 0.0519, Acctapping = 76.8% ± 5.9%) and 80% (AUCfluid = 0.7614 ± 0.0314, Acctfluid = 76.2% ± 1.0%) of the training sets for the tapping and fluid modes are needed for correct classification, resulting in predicted reduction of scan times.
Collapse
Affiliation(s)
- Alex Hadsell
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA; (A.H.); (H.C.); (U.K.)
| | - Huong Chau
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA; (A.H.); (H.C.); (U.K.)
- Center for Nanostructures, Santa Clara University, Santa Clara, CA 95053, USA;
| | - Richard Barber
- Center for Nanostructures, Santa Clara University, Santa Clara, CA 95053, USA;
- Department of Physics, Santa Clara University, Santa Clara, CA 95053, USA
| | - Unyoung Kim
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA; (A.H.); (H.C.); (U.K.)
- Center for Nanostructures, Santa Clara University, Santa Clara, CA 95053, USA;
| | - Maryam Mobed-Miremadi
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA; (A.H.); (H.C.); (U.K.)
- Correspondence: ; Tel.: +1-408-554-2731
| |
Collapse
|
5
|
Card M, Gravely M, M Madani SZ, Roxbury D. A Spin-Coated Hydrogel Platform Enables Accurate Investigation of Immobilized Individual Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31986-31995. [PMID: 34197074 DOI: 10.1021/acsami.1c06562] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been used in a variety of sensing and imaging applications over the past few years due to their unique optical properties. In the solution phase, SWCNTs are employed as near-infrared (NIR) fluorescence-based sensors of target analytes via modulations in emission intensity and/or wavelength. In an effort to lower the limit of detection, research has been conducted into isolating SWCNTs adhered to surfaces for potential single molecule analyte detection. However, it is known that SWCNT fluorescence is adversely affected by the inherently rough surfaces that are conventionally used for their observation (e.g., glass coverslip), potentially interfering with fluorescence-based analyte detection. Here, using a spin-coating method with thin films of alginate and SWCNTs, we demonstrate that a novel hydrogel platform can be created to investigate immobilized individual SWCNTs without significantly perturbing their optical properties as compared to solution-phase values. In contrast to the glass coverslip, which red-shifted DNA-functionalized (6,5)-SWCNTs by an average of 3.4 nm, the hydrogel platform reported emission wavelengths that statistically matched the solution-phase values. Additionally, the heterogeneity in the wavelength measurements, as determined from the width of created histograms, was reduced nearly by a factor of 3 for the SWCNTs in the hydrogel platform when compared to glass coverslips. Using long SWCNTs, i.e., those with an average length above the diffraction limit of our microscope, we show that a glass coverslip can induce optical heterogeneity along the length of a single SWCNT regardless of its surface functionalization. This is again significantly mitigated when examining the long SWCNTs in the hydrogel platform. Finally, we show that upon the addition of a model analyte (calcium chloride), the optical response can be spatially resolved along the length of a single SWCNT, enabling localized analyte detection on the surface of a single nanoscale sensor.
Collapse
Affiliation(s)
- Matthew Card
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Mitchell Gravely
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - S Zahra M Madani
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
6
|
Virumbrales-Muñoz M, Paz-Artigas L, Ciriza J, Alcaine C, Espona-Noguera A, Doblaré M, Sáenz Del Burgo L, Ziani K, Pedraz JL, Fernández L, Ochoa I. Force Spectroscopy Imaging and Constriction Assays Reveal the Effects of Graphene Oxide on the Mechanical Properties of Alginate Microcapsules. ACS Biomater Sci Eng 2020; 7:242-253. [PMID: 33337130 DOI: 10.1021/acsbiomaterials.0c01382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microencapsulation of cells in hydrogel-based porous matrices is an approach that has demonstrated great success in regenerative cell therapy. These microcapsules work by concealing the exogenous cells and materials in a robust biomaterial that prevents their recognition by the immune system. A vast number of formulations and additives are continuously being tested to optimize cell viability and mechanical properties of the hydrogel. Determining the effects of new microcapsule additives is a lengthy process that usually requires extensive in vitro and in vivo testing. In this paper, we developed a workflow using nanoindentation (i.e., indentation with a nanoprobe in an atomic force microscope) and a custom-built microfluidic constriction device to characterize the effect of graphene oxide (GO) on three microcapsule formulations. With our workflow, we determined that GO modifies the microcapsule stiffness and surface properties in a formulation-dependent manner. Our results also suggest, for the first time, that GO alters the conformation of the microcapsule hydrogel and its interaction with subsequent coatings. Overall, our workflow can infer the effects of new additives on microcapsule surfaces. Thus, our workflow can contribute to diminishing the time required for the validation of new microcapsule formulations and accelerate their clinical translation.
Collapse
Affiliation(s)
- María Virumbrales-Muñoz
- Department of Biomedical Engineering, Wisconsin Institutes of Medical Research, University of Wisconsin, 1111 Highland Avenue, Room 6028, Madison,53705, Wisconsin United States
| | - Laura Paz-Artigas
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Clara Alcaine
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Albert Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Manuel Doblaré
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Laura Sáenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Kaoutar Ziani
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, Vitoria-Gasteiz 01006, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Luis Fernández
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, Mariano Esquillor s/n, Zaragoza 50009, Spain.,Institute for Health Research Aragón (IIS Aragón), Avda San Juan Bosco, 13, Zaragoza 50009, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| |
Collapse
|
7
|
Gamez C, Schneider-Wald B, Bieback K, Schuette A, Büttner S, Hafner M, Gretz N, Schwarz ML. Compression Bioreactor-Based Mechanical Loading Induces Mobilization of Human Bone Marrow-Derived Mesenchymal Stromal Cells into Collagen Scaffolds In Vitro. Int J Mol Sci 2020; 21:ijms21218249. [PMID: 33158020 PMCID: PMC7672606 DOI: 10.3390/ijms21218249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage (AC) is an avascular tissue composed of scattered chondrocytes embedded in a dense extracellular matrix, in which nourishment takes place via the synovial fluid at the surface. AC has a limited intrinsic healing capacity, and thus mainly surgical techniques have been used to relieve pain and improve function. Approaches to promote regeneration remain challenging. The microfracture (MF) approach targets the bone marrow (BM) as a source of factors and progenitor cells to heal chondral defects in situ by opening small holes in the subchondral bone. However, the original function of AC is not obtained yet. We hypothesize that mechanical stimulation can mobilize mesenchymal stromal cells (MSCs) from BM reservoirs upon MF of the subchondral bone. Thus, the aim of this study was to compare the counts of mobilized human BM-MSCs (hBM-MSCs) in alginate-laminin (alginate-Ln) or collagen-I (col-I) scaffolds upon intermittent mechanical loading. The mechanical set up within an established bioreactor consisted of 10% strain, 0.3 Hz, breaks of 10 s every 180 cycles for 24 h. Contrary to previous findings using porcine MSCs, no significant cell count was found for hBM-MSCs into alginate-Ln scaffolds upon mechanical stimulation (8 ± 5 viable cells/mm3 for loaded and 4 ± 2 viable cells/mm3 for unloaded alginate-Ln scaffolds). However, intermittent mechanical stimulation induced the mobilization of hBM-MSCs into col-I scaffolds 10-fold compared to the unloaded col-I controls (245 ± 42 viable cells/mm3 vs. 22 ± 6 viable cells/mm3, respectively; p-value < 0.0001). Cells that mobilized into the scaffolds by mechanical loading did not show morphological changes. This study confirmed that hBM-MSCs can be mobilized in vitro from a reservoir toward col-I but not alginate-Ln scaffolds upon intermittent mechanical loading, against gravity.
Collapse
Affiliation(s)
- Carolina Gamez
- Section for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (C.G.); (B.S.-W.); (A.S.)
| | - Barbara Schneider-Wald
- Section for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (C.G.); (B.S.-W.); (A.S.)
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden Württemberg—Hessen, 68167 Mannheim, Germany;
| | - Andy Schuette
- Section for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (C.G.); (B.S.-W.); (A.S.)
| | - Sylvia Büttner
- Department for Statistical Analysis, Faculty of Medicine Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany;
- Institute of Medical Technology, Heidelberg University & Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Norbert Gretz
- Medical Research Centre, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Markus L. Schwarz
- Section for Experimental Orthopaedics and Trauma Surgery, Orthopaedics and Trauma Surgery Centre, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (C.G.); (B.S.-W.); (A.S.)
- Correspondence: ; Tel.: +49-621-383-4569
| |
Collapse
|
8
|
Fapyane D, Berillo D, Marty JL, Revsbech NP. Urea Biosensor Based on a CO 2 Microsensor. ACS OMEGA 2020; 5:27582-27590. [PMID: 33134722 PMCID: PMC7594316 DOI: 10.1021/acsomega.0c04146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Urea sensors based on electrodes in direct contact with the medium have limited long-term stability when exposed to complex media. Here, we present a urea biosensor based on urease immobilized in an alginate polymer, buffered at pH 6, and placed in front of a newly developed fast and sensitive CO2 microsensor, where the electrodes are shielded by a gas-permeable membrane. The CO2 produced by the urease in the presence of urea diffuses into the microsensor and is reduced at a Ag cathode. Oxygen interference is prevented by a Cr2+ trap. The 95% response time to changes in urea concentration was 120 s with a linear calibration curve in the range 0-1000 μM and a detection limit of 1 μM. The Ni2+ cofactor to improve sensor performance was continuously supplied from a reservoir behind the sensor tip. The stability of the urea sensor was optimized by the addition of bovine serum albumin as a stabilizer to the urease/alginate mixture that was cross-linked with glutaraldehyde and Ca2+ ions. This immobilization strategy resulted in about 70% of the initial urea sensor sensitivity after two weeks of continuous operation. The sensor was successfully tested in blood serum.
Collapse
Affiliation(s)
- Deby Fapyane
- Aarhus University
Centre for Water Technology (WATEC), Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus
C 8000, Denmark
| | - Dmitriy Berillo
- Aarhus University
Centre for Water Technology (WATEC), Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus
C 8000, Denmark
| | - Jean-Louis Marty
- BAE (Biocapteurs-Analyses-Environnement), Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan
Cedex 66860, France
| | - Niels Peter Revsbech
- Aarhus University
Centre for Water Technology (WATEC), Department of Biology, Aarhus University, Ny Munkegade 114-116, Aarhus
C 8000, Denmark
| |
Collapse
|
9
|
Kowacz M, Pollack GH. Cells in New Light: Ion Concentration, Voltage, and Pressure Gradients across a Hydrogel Membrane. ACS OMEGA 2020; 5:21024-21031. [PMID: 32875239 PMCID: PMC7450609 DOI: 10.1021/acsomega.0c02595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The ionic compositions of the intra- and extracellular environments are distinct from one another, with K+ being the main cation in the cytosol and Na+ being the most abundant cation outside of the cell. Specific ions can permeate into and out of the cell at different rates, bringing about uneven distribution of charges and development of negative electric potential inside the cell. Each healthy cell must maintain a specific ion concentration gradient and voltage. To account for these functions, various ionic pumps and channels located within the cell membrane have been invoked. In this work, we use a porous alginate hydrogel as a model gelatinous network representing the plant cell wall or cytoskeleton of the animal cell. We show that the gel barrier is able to maintain a stable separation of ionic solutions of different ionic strengths and chemical compositions without any pumping activity. For the Na+/K+ concentration gradient sustained across the barrier, a negative electric potential develops within the K+-rich side. The situation is reminiscent of that in the cell. Furthermore, also the advective flow of water molecules across the gel barrier is restricted, despite the gel's large pores and the osmotic or hydrostatic pressure gradients across it. This feature has important implications for osmoregulation. We propose a mechanism in which charge separation and electric fields developing across the permselective (gel) membrane prevent ion and bulk fluid flows ordinarily driven by chemical and pressure gradients.
Collapse
|
10
|
Bom S, Santos C, Barros R, Martins AM, Paradiso P, Cláudio R, Pinto PC, Ribeiro HM, Marto J. Effects of Starch Incorporation on the Physicochemical Properties and Release Kinetics of Alginate-Based 3D Hydrogel Patches for Topical Delivery. Pharmaceutics 2020; 12:pharmaceutics12080719. [PMID: 32751818 PMCID: PMC7466037 DOI: 10.3390/pharmaceutics12080719] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
The development of printable hydrogel inks for extrusion-based 3D printing is opening new possibilities to the production of new and/or improved pharmaceutical forms, specifically for topical application. Alginate and starch are natural polysaccharides that have been extensively exploited due to their biocompatibility, biodegradability, viscosity properties, low toxicity, and relatively low cost. This research work aimed to study the physicochemical and release kinetic effects of starch incorporation in alginate-based 3D hydrogel patches for topical delivery using a quality by design approach. The incorporation of a pregelatinized starch is also proposed as a way to improve the properties of the drug delivery system while maintaining the desired quality characteristics. Critical material attributes and process parameters were identified, and the sensitivity and adequacy of each parameter were statistically analyzed. The impact of alginate, starch, and CaCl2·2H2O amounts on relevant quality attributes was estimated crosswise. The amount of starch revealed a synergetic impact on porosity (p = 0.0021). An evident increase in the size and quantity of open pores were detected in the as printed patches as well as after crosslinking (15.6 ± 5.2 µm). In vitro drug release studies from the optimized alginate-starch 3D hydrogel patch, using the probe Rhodamine B, showed an initial high burst release, followed by a controlled release mechanism. The results obtained also showed that the viscoelastic properties, printing accuracy, gelation time, microstructure, and release rates can be modulated by varying the amount of starch added to the system. Furthermore, these results can be considered an excellent baseline for future drug release modulation strategies.
Collapse
Affiliation(s)
- Sara Bom
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.B.); (A.M.M.); (P.C.P.); (H.M.R.)
- PhD Trials, Avenida Maria Helena Vieira da Silva, n° 24 A, 1750-182 Lisbon, Portugal
| | - Catarina Santos
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal; (C.S.); (R.C.)
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
| | - Rita Barros
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Ana M. Martins
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.B.); (A.M.M.); (P.C.P.); (H.M.R.)
| | - Patrizia Paradiso
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
| | - Ricardo Cláudio
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal; (C.S.); (R.C.)
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Pedro Contreiras Pinto
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.B.); (A.M.M.); (P.C.P.); (H.M.R.)
- PhD Trials, Avenida Maria Helena Vieira da Silva, n° 24 A, 1750-182 Lisbon, Portugal
| | - Helena M. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.B.); (A.M.M.); (P.C.P.); (H.M.R.)
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (S.B.); (A.M.M.); (P.C.P.); (H.M.R.)
- Correspondence: ; Tel.: +351-217-946-400
| |
Collapse
|
11
|
Virumbrales-Muñoz M, Santos-Vizcaino E, Paz L, Gallardo-Moreno AM, Orive G, Hernandez RM, Doblaré M, Gonzalez-Martin ML, Fernández LJ, Pedraz JL, Ochoa I. Force spectroscopy-based simultaneous topographical and mechanical characterization to study polymer-to-polymer interactions in coated alginate microspheres. Sci Rep 2019; 9:20112. [PMID: 31882828 PMCID: PMC6934587 DOI: 10.1038/s41598-019-56547-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Cell-laden hydrogel microspheres have shown encouraging outcomes in the fields of drug delivery, tissue engineering or regenerative medicine. Beyond the classical single coating with polycations, many other different coating designs have been reported with the aim of improving mechanical properties and in vivo performance of the microspheres. Among the most common strategies are the inclusion of additional polycation coatings and the covalent bonding of the semi-permeable membranes with biocompatible crosslinkers such as genipin. However, it remains challenging to characterize the effects of the interactions between the polycations and the hydrogel microspheres over time in vitro. Here we use a force spectroscopy-based simultaneous topographical and mechanical characterization to study polymer-to-polymer interactions in alginate microspheres with different coating designs, maintaining the hydrogels in liquid. In addition to classical topography parameters, we explored, for the first time, the evolution of peak/valley features along the z axis via thresholding analysis and the cross-correlation between topography and stiffness profiles with resolution down to tens of nanometers. Thus, we demonstrated the importance of genipin crosslinking to avoid membrane detachment in alginate microspheres with double polycation coatings. Overall, this methodology could improve hydrogel design rationale and expedite in vitro characterization, therefore facilitating clinical translation of hydrogel-based technologies.
Collapse
Affiliation(s)
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Paz
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Applied Mechanics and Bioengineering Group (AMB), University of Zaragoza, Zaragoza, Spain
| | - Amparo Maria Gallardo-Moreno
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Applied Physics, University of Extremadura, Badajoz, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Doblaré
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Applied Mechanics and Bioengineering Group (AMB), University of Zaragoza, Zaragoza, Spain
| | - Maria Luisa Gonzalez-Martin
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Applied Physics, University of Extremadura, Badajoz, Spain
| | - Luis Jose Fernández
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
- Applied Mechanics and Bioengineering Group (AMB), University of Zaragoza, Zaragoza, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ignacio Ochoa
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
- Applied Mechanics and Bioengineering Group (AMB), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
12
|
Mutlu B, Farhan M, Kucuk I. T-Shaped Microfluidic Junction Processing of Porous Alginate-Based Films and Their Characteristics. Polymers (Basel) 2019; 11:E1386. [PMID: 31450763 PMCID: PMC6780642 DOI: 10.3390/polym11091386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
In this work, highly monodisperse porous alginate films from bubble bursting were formed on a glass substrate at ambient temperature, by a T-shaped microfluidic junction device method using polyethylene glycol (PEG) stearate and phospholipid as precursors in some cases. Various polymer solution concentrations and feeding liquid flow rates were applied for the generation of monodisperse microbubbles, followed by the conversion of the bubbles to porous film structures on glass substrates. In order to compare the physical properties of polymeric solutions, the effects of alginate, PEG stearate (surfactant), and phospholipid concentrations on the flowability of the liquid in a T-shaped microfluidic junction device were studied. To tailor microbubble diameter and size distribution, a method for controlling the thinning process of the bubbles' shell was also explored. In order to control pore size, shape, and surface as well as internal structure morphologies in the scalable forming of alginate polymeric films, the effect of the feeding liquid's flow rate and concentrations of PEG-stearate and phospholipid was also studied. Digital microscopy images revealed that the as-formed alginate films at the flow rate of 100 µL·min-1 and the N2 gas pressure of 0.8 bar have highly monodisperse microbubbles with a polydispersity index (PDI) of approximately 6.5%. SEM captures also revealed that the as-formed alginate films with high PDI value have similar monodisperse porous surface and internal structure morphologies, with the exception that the as-formed alginate films with the help of phospholipids were mainly formed under our experimental environment. From the Fourier-transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) measurements, we concluded that no chemical composition changes, thermal influence, and crystal structural modifications were observed due to the T-shaped microfluidic junction device technique. The method used in this work could expand and enhance the use of alginate porous films in a wide range of bioengineering applications, especially in tissue engineering and drug delivery, such as studying release behaviors to different internal and surface morphologies.
Collapse
Affiliation(s)
- Betul Mutlu
- Graduate School of Natural and Applied Sciences, Bursa Technical University, Bursa 16310, Turkey
| | - Muhammad Farhan
- Department of Pharmaceutics, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Israfil Kucuk
- Institute of Nanotechnology, Gebze Technical University, Gebze 41400, Turkey.
| |
Collapse
|
13
|
Mohammed C, Mahabir S, Mohammed K, John N, Lee KY, Ward K. Calcium Alginate Thin Films Derived from Sargassum natans for the Selective Adsorption of Cd2+, Cu2+, and Pb2+ Ions. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03691] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | | | | | | | - Koon-Yang Lee
- Department of Aeronautics, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | | |
Collapse
|
14
|
Farias C, Lyman R, Hemingway C, Chau H, Mahacek A, Bouzos E, Mobed-Miremadi M. Three-Dimensional (3D) Printed Microneedles for Microencapsulated Cell Extrusion. Bioengineering (Basel) 2018; 5:E59. [PMID: 30065227 PMCID: PMC6164407 DOI: 10.3390/bioengineering5030059] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
Cell-hydrogel based therapies offer great promise for wound healing. The specific aim of this study was to assess the viability of human hepatocellular carcinoma (HepG2) cells immobilized in atomized alginate capsules (3.5% (w/v) alginate, d = 225 µm ± 24.5 µm) post-extrusion through a three-dimensional (3D) printed methacrylate-based custom hollow microneedle assembly (circular array of 13 conical frusta) fabricated using stereolithography. With a jetting reliability of 80%, the solvent-sterilized device with a root mean square roughness of 158 nm at the extrusion nozzle tip (d = 325 μm) was operated at a flowrate of 12 mL/min. There was no significant difference between the viability of the sheared and control samples for extrusion times of 2 h (p = 0.14, α = 0.05) and 24 h (p = 0.5, α = 0.05) post-atomization. Factoring the increase in extrusion yield from 21.2% to 56.4% attributed to hydrogel bioerosion quantifiable by a loss in resilience from 5470 (J/m³) to 3250 (J/m³), there was no significant difference in percentage relative payload (p = 0.2628, α = 0.05) when extrusion occurred 24 h (12.2 ± 4.9%) when compared to 2 h (9.9 ± 2.8%) post-atomization. Results from this paper highlight the feasibility of encapsulated cell extrusion, specifically protection from shear, through a hollow microneedle assembly reported for the first time in literature.
Collapse
Affiliation(s)
- Chantell Farias
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Roman Lyman
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Cecilia Hemingway
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Huong Chau
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Anne Mahacek
- SCU Maker Lab, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Evangelia Bouzos
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Maryam Mobed-Miremadi
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| |
Collapse
|
15
|
Duque R, Shan Y, Joya M, Ravichandran N, Asi B, Mobed-Miremadi M, Mulrooney S, McNeil M, Prakash S. Effect of artificial cell miniaturization on urea degradation by immobilized E. coli DH5α (pKAU17). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:766-775. [PMID: 29961338 DOI: 10.1080/21691401.2018.1469026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Second generation E. coli DH5α (pKAU17) was successfully encapsulated by means of atomization (MA), inkjet printing (MI) and double-encapsulation (DDMI) for the purpose of urea degradation in a simulated uremic medium at 37 °C. Experimentally determined values of the effectiveness factor are 0.83, 0.28 and 0.34 for the MI, MA and DDMI capsules, respectively, suggesting that the catalytic activity of the E. coli DH5α (pKAU17) immobilized in MI capsule (d = 52 μm ± 2.7 μm) is significantly less diffusion-limited than in the case of the MA (d = 1558 μm ± 125 μm) and DDMI (d = 1370 μm ± 60 μm) bio-encapsulation schemes at the 98.3% CI. The proposed novel double encapsulation biofabrication method for alginate-based microspheres, characterized by lower membrane degradation rates due to secondary containment is recommended compared to the standard atomization scheme currently adopted across immobilization-based therapeutic scenarios. A Fickian-based mechanism is proposed with simulations mimicking urea degradation for a single capsule for the atomization and the inkjet schemes.
Collapse
Affiliation(s)
| | | | | | | | - Berok Asi
- e Genentech , South San Francisco , CA , USA
| | | | - Scott Mulrooney
- g Microbiology and Molecular Genetics , Michigan State University , East Lansing , MI , USA
| | - Melanie McNeil
- h Department of Biomedical, Chemical and Materials Engineering , San Jose State University , San Jose , CA , USA
| | - Satya Prakash
- i Department of Biomedical Engineering , McGill University , Montreal , Quebec , Canada
| |
Collapse
|
16
|
Bueno A, Selmer I, S.P R, Gurikov P, Lölsberg W, Weinrich D, Fricke M, Smirnova I. First Evidence of Solvent Spillage under Subcritical Conditions in Aerogel Production. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alberto Bueno
- Hamburg University of Technology, Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Ilka Selmer
- Hamburg University of Technology, Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Raman S.P
- Hamburg University of Technology, Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Pavel Gurikov
- Hamburg University of Technology, Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Wibke Lölsberg
- BASF Polyurethanes GmbH, RAP/LF-E41, Elastogranstraße 60, 49448 Lemfoerde, Germany
| | - Dirk Weinrich
- BASF Polyurethanes GmbH, RAP/LF-E41, Elastogranstraße 60, 49448 Lemfoerde, Germany
| | - Marc Fricke
- BASF Polyurethanes GmbH, RAP/LF-E41, Elastogranstraße 60, 49448 Lemfoerde, Germany
| | - Irina Smirnova
- Hamburg University of Technology, Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| |
Collapse
|
17
|
Dobos A, Grandhi TSP, Godeshala S, Meldrum DR, Rege K. Parallel fabrication of macroporous scaffolds. Biotechnol Bioeng 2018; 115:1729-1742. [DOI: 10.1002/bit.26593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Andrew Dobos
- Biomedical Engineering; Arizona State University; Tempe Arizona
| | | | | | - Deirdre R. Meldrum
- Center for Biosignatures Discovery Automation, Biodesign Institute; Arizona State University; Tempe Arizona
| | - Kaushal Rege
- Chemical Engineering; Arizona State University; Tempe Arizona
| |
Collapse
|
18
|
Production of Biodiesel Using Immobilized Lipase and the Characterization of Different Co-Immobilizing Agents and Immobilization Methods. SUSTAINABILITY 2016. [DOI: 10.3390/su8090764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Hu C, Sun H, Liu Z, Chen Y, Chen Y, Wu H, Ren K. Freestanding 3-D microvascular networks made of alginate hydrogel as a universal tool to create microchannels inside hydrogels. BIOMICROFLUIDICS 2016; 10:044112. [PMID: 27679676 PMCID: PMC5010556 DOI: 10.1063/1.4961969] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
The diffusion of molecules such as nutrients and oxygen through densely packed cells is impeded by blockage and consumption by cells, resulting in a limited depth of penetration. This has been a major hurdle to a bulk (3-D) culture. Great efforts have been made to develop methods for generating branched microchannels inside hydrogels to support mass exchange inside a bulk culture. These previous attempts faced a common obstacle: researchers tried to fabricate microchannels with gels already loaded with cells, but the fabrication procedures are often harmful to the embedded cells. Herein, we present a universal strategy to create microchannels in different types of hydrogels, which effectively avoids cell damage. This strategy is based on a freestanding alginate 3-D microvascular network prepared by in-situ generation of copper ions from a sacrificial copper template. This alginate network could be used as implants to create microchannels inside different types of hydrogels. This approach effectively addresses the issue of cell damage during microfabrication and made it possible to create microchannels inside different types of gels. The microvascular network produced with this method is (1) strong enough to allow handling, (2) biocompatible to allow cell culturing, and (3) appropriately permeable to allow diffusion of small molecules, while sufficiently dense to prevent blocking of channels when embedded in different types of gels. In addition, composite microtubules could be prepared by simply pre-loading other materials, e.g., particles and large biomolecules, in the hydrogel. Compared with other potential strategies to fabricate freestanding gel channel networks, our method is more rapid, low-cost and scalable due to parallel processing using an industrially mass-producible template. We demonstrated the use of such vascular networks in creating microchannels in different hydrogels and composite gels, as well as with a cell culture in a nutrition gradient based on microfluidic diffusion. In this way, the freestanding hydrogel vascular network we produced is a universal functional unit that can be embedded in different types of hydrogel; users will be able to adopt this strategy to achieve vascular mass exchange in the bulk culture without changing their current protocol. The method is readily implementable to applications in vascular tissue regeneration, drug discovery, 3-D culture, etc.
Collapse
Affiliation(s)
- Chong Hu
- Department of Chemistry, The Hong Kong Baptist University , Waterloo Rd, Kowloon, Hong Kong, China
| | - Han Sun
- Department of Chemistry, The Hong Kong Baptist University , Waterloo Rd, Kowloon, Hong Kong, China
| | - Zhengzhi Liu
- Department of Chemistry, The Hong Kong Baptist University , Waterloo Rd, Kowloon, Hong Kong, China
| | - Yin Chen
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Yangfan Chen
- Department of Chemistry, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
20
|
Yu L, Grist SM, Nasseri SS, Cheng E, Hwang YCE, Ni C, Cheung KC. Core-shell hydrogel beads with extracellular matrix for tumor spheroid formation. BIOMICROFLUIDICS 2015; 9:024118. [PMID: 25945144 PMCID: PMC4401801 DOI: 10.1063/1.4918754] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/07/2015] [Indexed: 05/09/2023]
Abstract
Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since they may provide a better model of the tumor than conventional monolayer culture. Moreover, tumor cell interaction with the extracellular matrix can determine cell organization and behavior. In this work, a microfluidic system was used to form cell-laden core-shell beads which incorporate elements of the extracellular matrix and support the formation of multicellular spheroids. The bead core (comprising a mixture of alginate, collagen, and reconstituted basement membrane, with gelation by temperature control) and shell (comprising alginate hydrogel, with gelation by ionic crosslinking) were simultaneously formed through flow focusing using a cooled flow path into the microfluidic chip. During droplet gelation, the alginate acts as a fast-gelling shell which aids in preventing droplet coalescence and in maintaining spherical droplet geometry during the slower gelation of the collagen and reconstituted basement membrane components as the beads warm up. After droplet gelation, the encapsulated MCF-7 cells proliferated to form uniform spheroids when the beads contained all three components: alginate, collagen, and reconstituted basement membrane. The dose-dependent response of the MCF-7 cell tumor spheroids to two anticancer drugs, docetaxel and tamoxifen, was compared to conventional monolayer culture.
Collapse
Affiliation(s)
- L Yu
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - S M Grist
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - S S Nasseri
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - E Cheng
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Y-C E Hwang
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - C Ni
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - K C Cheung
- Electrical and Computer Engineering, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|