1
|
Szasz A. Pulsing Addition to Modulated Electro-Hyperthermia. Bioengineering (Basel) 2024; 11:725. [PMID: 39061807 PMCID: PMC11273694 DOI: 10.3390/bioengineering11070725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Numerous preclinical results have been verified, and clinical results have validated the advantages of modulated electro-hyperthermia (mEHT). This method uses the nonthermal effects of the electric field in addition to thermal energy absorption. Modulation helps with precisely targeting and immunogenically destroying malignant cells, which could have a vaccination-like abscopal effect. A new additional modulation (high-power pulsing) further develops the abilities of the mEHT. My objective is to present the advantages of pulsed treatment and how it fits into the mEHT therapy. Pulsed treatment increases the efficacy of destroying the selected tumor cells; it is active deeper in the body, at least tripling the penetration of the energy delivery. Due to the constant pulse amplitude, the dosing of the absorbed energy is more controllable. The induced blood flow for reoxygenation and drug delivery is high enough but not as high as increasing the risk of the dissemination of malignant cells. The short pulses have reduced surface absorption, making the treatment safer, and the increased power in the pulses allows the reduction of the treatment time needed to provide the necessary dose.
Collapse
Affiliation(s)
- Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
2
|
Czarnywojtek A, Borowska M, Dyrka K, Van Gool S, Sawicka-Gutaj N, Moskal J, Kościński J, Graczyk P, Hałas T, Lewandowska AM, Czepczyński R, Ruchała M. Glioblastoma Multiforme: The Latest Diagnostics and Treatment Techniques. Pharmacology 2023; 108:423-431. [PMID: 37459849 DOI: 10.1159/000531319] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/05/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a WHO grade 4 glioma and the most common malignant primary brain tumour. Recently, there has been outstanding progress in the treatment of GBM. In addition to the newest form of GBM removal using fluorescence, three-dimensional (3D) imaging, tomoradiotherapy, moderate electro-hyperthermia, and adjuvant temozolomide (post-operative chemotherapy), new developments have been made in the fields of immunology, molecular biology, and virotherapy. An unusual and modern treatment has been created, especially for stage 4 GBM, using the latest therapeutic techniques, including immunotherapy and virotherapy. Modern oncological medicine is producing extraordinary and progressive therapeutic methods. Oncological therapy includes individual analysis of the properties of a tumour and targeted therapy using small-molecule inhibitors. Individualised medicine covers the entire patient (tumour and host) in the context of immunotherapy. An example is individualised multimodal immunotherapy (IMI), which relies on individual immunological tumour-host interactions. In addition, IMI is based on the concept of oncolytic virus-induced immunogenic tumour cell death. SUMMARY In this review, we outline current knowledge of the various available treatment options used in the therapy of GBM including both traditional therapeutic strategy and modern therapies, such as tomotherapy, electro-hyperthermia, and oncolytic virotherapy, which are promising treatment strategies with the potential to improve prognosis in patients with GBM. KEY MESSAGES This newest therapy, immunotherapy combined with virotherapy (oncolytic viruses and cancer vaccines), is displaying encouraging signs for combating GBM. Additionally, the latest 3D imaging is compared to conventional two-dimensional imaging.
Collapse
Affiliation(s)
- Agata Czarnywojtek
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Borowska
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kamil Dyrka
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Jakub Moskal
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Jeremi Kościński
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Patryk Graczyk
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Hałas
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Minnaar CA, Kotzen JA, Naidoo T, Tunmer M, Sharma V, Vangu MDT, Baeyens A. Analysis of the effects of mEHT on the treatment-related toxicity and quality of life of HIV-positive cervical cancer patients. Int J Hyperthermia 2020; 37:263-272. [PMID: 32180481 DOI: 10.1080/02656736.2020.1737253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction: HIV infection is associated with increased treatment-related toxicity and worse outcomes in locally advanced cervical cancer patients (LACC), especially in resource-constrained settings. Local control (LC) in a phase III randomized, controlled trial investigating modulated electro-hyperthermia (mEHT) on LACC patients in South Africa (ethics registration: M120477/M190295), was significantly higher in participants randomized to receive chemoradiotherapy (CRT) with mEHT compared to CRT alone (stratum: HIV status, accounting for age and stage). This analysis investigates whether mEHT adds to the toxicity profile of CRT in HIV-positive LACC participants.Methods: Inclusion criteria: signed informed consent; International Federation of Gynecology and Obstetrics stages IIB to IIIB squamous cell carcinoma of the cervix; HIV-positive patients: CD4 count >200 cell/µL/on antiretroviral treatment for >6 months; eligible for CRT with radical intent. Recruitment: January 2014 to November 2017 (ClinicalTrials.gov: NCT03332069). Acute toxicity (evaluated using CTCAE v4 criteria) and quality of life (according to EORTC forms) in 206 participants randomized for treatment were evaluated alongside the LC results to determine safety and efficacy in HIV-positive participants.Results: Compliance to mEHT treatment was high (97% completed ≥8 treatments) with no significant differences in CRT-related toxicity between treatment groups or between HIV-positive and -negative participants. Adverse events attributed to mEHT were minor, even in obese patients, and did not affect CRT compliance. Participants treated with mEHT reported improved fatigue, pain, emotional and cognitive functioning.Conclusion: mEHT did not cause unexpected CRT-related toxicities and is a safe treatment modality for HIV-positive patients, with minor limitations regarding body weight, even in a low-resource setting.
Collapse
Affiliation(s)
- Carrie Anne Minnaar
- Division of Radiobiology, Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeffrey Allan Kotzen
- Department of Radiation Oncology, Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Thanushree Naidoo
- Department of Clinical and Radiation Oncology, Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Mariza Tunmer
- Division of Radiobiology, Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Radiation Oncology, Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Vinay Sharma
- Division of Radiobiology, Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Radiation Oncology, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Mboyo-Di-Tamba Vangu
- Division of Nuclear Medicine, Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Nuclear Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Ans Baeyens
- Division of Radiobiology, Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Radiobiology, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Lee SY, Fiorentini G, Szasz AM, Szigeti G, Szasz A, Minnaar CA. Quo Vadis Oncological Hyperthermia (2020)? Front Oncol 2020; 10:1690. [PMID: 33014841 PMCID: PMC7499808 DOI: 10.3389/fonc.2020.01690] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Heating as a medical intervention in cancer treatment is an ancient approach, but effective deep heating techniques are lacking in modern practice. The use of electromagnetic interactions has enabled the development of more reliable local-regional hyperthermia (LRHT) techniques whole-body hyperthermia (WBH) techniques. Contrary to the relatively simple physical-physiological concepts behind hyperthermia, its development was not steady, and it has gone through periods of failures and renewals with mixed views on the benefits of heating seen in the medical community over the decades. In this review we study in detail the various techniques currently available and describe challenges and trends of oncological hyperthermia from a new perspective. Our aim is to describe what we believe to be a new and effective approach to oncologic hyperthermia, and a change in the paradigm of dosing. Physiological limits restrict the application of WBH which has moved toward the mild temperature range, targeting immune support. LRHT does not have a temperature limit in the tumor (which can be burned out in extreme conditions) but a trend has started toward milder temperatures with immune-oriented goals, developing toward immune modulation, and especially toward tumor-specific immune reactions by which LRHT seeks to target the malignancy systemically. The emerging research of bystander and abscopal effects, in both laboratory investigations and clinical applications, has been intensified. Our present review summarizes the methods and results, and discusses the trends of hyperthermia in oncology.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Radiation Oncology, Chonbuk National University Hospital, Jeonbuk, South Korea
| | | | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Gyula Szigeti
- Innovation Center, Semmelweis University, Budapest, Hungary
| | - Andras Szasz
- Biotechnics Department, St. Istvan University, Godollo, Hungary
| | - Carrie Anne Minnaar
- Department of Radiation Oncology, Wits Donald Gordon Medical Center, Johannesburg, South Africa
| |
Collapse
|
5
|
Minnaar CA, Kotzen JA, Ayeni OA, Vangu MDT, Baeyens A. Potentiation of the Abscopal Effect by Modulated Electro-Hyperthermia in Locally Advanced Cervical Cancer Patients. Front Oncol 2020; 10:376. [PMID: 32266151 PMCID: PMC7105641 DOI: 10.3389/fonc.2020.00376] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/04/2020] [Indexed: 11/19/2022] Open
Abstract
Background: A Phase III randomized controlled trial investigating the addition of modulated electro-hyperthermia (mEHT) to chemoradiotherapy for locally advanced cervical cancer patients is being conducted in South Africa (Human Research Ethics Committee approval: M1704133; ClincialTrials.gov ID: NCT03332069). Two hundred and ten participants were randomized and 202 participants were eligible for six month local disease control evaluation. Screening 18F-FDG PET/CT scans were conducted and repeated at six months post-treatment. Significant improvement in local control was reported in the mEHT group and complete metabolic resolution (CMR) of extra-pelvic disease was noted in some participants. We report on an analysis of the participants with CMR of disease inside and outside the radiation field. Method: Participants were included in this analysis if nodes outside the treatment field (FDG-uptake SUV>2.5) were visualized on pre-treatment scans and if participants were evaluated by 18F-FDG PET/CT scans at six months post-treatment. Results: One hundred and eight participants (mEHT: HIV-positive n = 25, HIV-negative n = 29; Control Group: HIV-positive n = 26, HIV-negative n = 28) were eligible for analysis. There was a higher CMR of all disease inside and outside the radiation field in the mEHT Group: n = 13 [24.1%] than the control group: n = 3 [5.6%] (Chi squared, Fisher's exact: p = 0.013) with no significant difference in the extra-pelvic response to treatment between the HIV-positive and -negative participants of each group. Conclusion: The CMR of disease outside the radiation field at six months post-treatment provides evidence of an abscopal effect which was significantly associated with the addition of mEHT to treatment protocols. This finding is important as the combined synergistic use of radiotherapy with mEHT could broaden the scope of radiotherapy to include systemic disease.
Collapse
Affiliation(s)
- Carrie Anne Minnaar
- Radiobiology, Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeffrey Allan Kotzen
- Radiation Oncology, Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Olusegun Akinwale Ayeni
- Nuclear Medicine, Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mboyo-Di-Tamba Vangu
- Nuclear Medicine, Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ans Baeyens
- Radiobiology, Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Radiobiology, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Szasz AM, Minnaar CA, Szentmártoni G, Szigeti GP, Dank M. Review of the Clinical Evidences of Modulated Electro-Hyperthermia (mEHT) Method: An Update for the Practicing Oncologist. Front Oncol 2019; 9:1012. [PMID: 31737558 PMCID: PMC6837995 DOI: 10.3389/fonc.2019.01012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Modulated electro-hyperthermia (mEHT) is a variation of the conventional hyperthermia which selectively targets the malignant cell membranes in order to heat the malignant tissue and sensitize the tissue to oncology treatments. Although widely applied, the formulation of guidelines for the use thereof is still in progress for many tumors. Aim: In this paper we review the literature on the effects of mEHT in cancer patients on local disease control and survival. Methodology: Our review on data presents the collected experience with capacitive hyperthermia treatments with the EHY-2000+ device (OncoTherm Ltd., Germany). A literature search was conducted in Pubmed and articles were grouped and discussed according to: trial type, animal studies, in vitro studies, and reviews. Search results from Conference Abstracts; Trial Registries; Thesis and Dissertations and the Oncothermia Journal were included in the discussions. Results: Modulated electro-hyperthermia is a safe form of hyperthermia which has shown to effectively sensitizes deep tumors, regardless of the thickness of the adipose layers. The technology has demonstrated equal benefits compared to other forms of hyperthermia for a variety of tumors. Given the effective heating ability to moderate temperatures, the improved tumor perfusion, and ability to increase drug absorption, mEHT is a safe and effective heating technology which can be easily applied to sensitize tumors which have demonstrated benefits with the addition of hyperthermia. Modulated electro-hyperthermia also appears to improve local control and survival rates and appears to induce an abscopal (systemic) response to ionizing radiation. Conclusion: Based on clinical studies, the method mEHT is a feasible hyperthermia technology for oncological applications. Concomitant utilization of mEHT is supported by the preclinical and clinical data.
Collapse
Affiliation(s)
| | | | | | - Gyula P. Szigeti
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Magdolna Dank
- Cancer Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Minnaar CA, Kotzen JA, Ayeni OA, Naidoo T, Tunmer M, Sharma V, Vangu MDT, Baeyens A. The effect of modulated electro-hyperthermia on local disease control in HIV-positive and -negative cervical cancer women in South Africa: Early results from a phase III randomised controlled trial. PLoS One 2019; 14:e0217894. [PMID: 31216321 PMCID: PMC6584021 DOI: 10.1371/journal.pone.0217894] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The global burden of cervical cancer remains high with the highest morbidity and mortality rates reported in developing countries. Hyperthermia as a chemo- and radiosensitiser has shown to improve treatment outcomes. This is an analysis of the local control results at six months post-treatment of patients enrolled in an ongoing study investigating the effects of the addition of modulated electro-hyperthermia (mEHT) to chemoradiotherapy for the treatment of HIV-positive and -negative cervical cancer patients in a low-resource setting. METHODS This ongoing Phase III randomised controlled trial, conducted at a state hospital in Johannesburg, South Africa, was registered with the appropriate ethics committee. After signing an informed consent, participants with FIGO stages IIB to IIIB squamous cell carcinoma of the cervix were randomised to receive chemoradiotherapy with/without mEHT using a secure online random-sampling tool (stratum: HIV status) accounting for age and stage. Reporting physicians were blind to treatment allocation. HIV-positive participants on antiretroviral treatment, or with a CD4 count >200cell/μL were included. mEHT was administered 2/weekly immediately before external beam radiation. The primary end point is local disease control (LDC) and secondary endpoints are toxicity; quality of life analysis; and two year survival. We report on six month LDC, including nodes visualised in the radiation field on 18F-FDG PET/CT (censored for six month survival), and six month local disease free survival (LDFS) (based on intention to treat). Trial status: Recruitment closed (ClinicalTrials.gov: NCT03332069). RESULTS 271 participants were recruited between January 2014 and November 2017, of which 210 were randomised for trial and 202 were available for analysis at six months post-treatment (mEHT: n = 101; Control: n = 101). Six month LDFS was higher in the mEHT Group (n = 39[38.6%]), than in the Control Group (n = 20[19.8%]); p = 0.003). LDC was also higher in the mEHT Group (n = 40[45.5%]) than the Control Group (n = 20[24.1%]); (p = 0.003). CONCLUSION Our results show that mEHT is effective as a chemo-radiosensitiser for cervical cancer, even in high risk a patients and resource-constrained settings.
Collapse
Affiliation(s)
- Carrie Anne Minnaar
- Department of Radiation Sciences, Radiobiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeffrey Allan Kotzen
- Department of Radiation Oncology, Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Olusegun Akinwale Ayeni
- Department of Nuclear Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Thanushree Naidoo
- Department of Radiation Oncology, Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Mariza Tunmer
- Department of Radiation Oncology, Wits Donald Gordon Medical Centre, Johannesburg, South Africa
- Department of Radiation Sciences, Radiation Oncology, University of the Witwatersrand, Johannesburg, South Africa
| | - Vinay Sharma
- Department of Radiation Sciences, Radiation Oncology, University of the Witwatersrand, Johannesburg, South Africa
| | - Mboyo-Di-Tamba Vangu
- Department of Nuclear Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
- Department of Radiation Sciences, Nuclear Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Ans Baeyens
- Department of Radiation Sciences, Radiobiology, University of the Witwatersrand, Johannesburg, South Africa
- Department of Human Structure and Repair, Radiobiology, Ghent University, Ghent, Belgium
| |
Collapse
|