1
|
Sahil, Kaur K, Jaitak V. Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies. Curr Med Chem 2022; 29:4958-5009. [DOI: 10.2174/0929867329666220318100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
Background:
Cancer is the second leading cause of death throughout the world. Many anticancer drugs are commercially available, but lack of selectivity, target specificity, cytotoxicity and development of resistance lead to serious side effects. There have been several experiments going on to develop compounds with minor or no side effects.
Objective:
This review mainly emphasizes synthetic strategies, SAR studies, and mechanism of action for thiazole, benzothiazole, and imidazothiazole containing compounds as anticancer agents.
Methods:
Recent literature related to thiazole and thiazole-related derivatives endowed with encouraging anticancer potential is reviewed. This review emphasizes contemporary strategies used for the synthesis of thiazole and related derivatives, mechanistic targets, and comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency thiazole-based anticancer drug candidates.
Results:
Exhaustive literature survey indicated that thiazole derivatives are associated with properties of inducing
apoptosis and disturbing tubulin assembly. Thiazoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogen-mediated activity. Furthermore, thiazole derivatives have been found to modulate critical targets such as topoisomerase and HDAC.
Conclusion:
Thiazole derivatives seem to be quite competent and act through various mechanisms. Some of the thiazole derivatives, such as compounds 29, 40, 62, and 74a with IC50 values of 0.05 μM, 0.00042 μM, 0.18 μM, and 0.67 μM, respectively not only have anticancer activity but they also have lower toxicity and better absorption. Therefore, some other similar compounds could be investigated to aid in the development of anticancer pharmacophores.
Collapse
Affiliation(s)
- Sahil
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), India
| |
Collapse
|
2
|
Copper (II) Heterocyclic Thiosemicarbazone Complexes as Single-Source Precursors for the Preparation of Cu9S5 Nanoparticles: Application in Photocatalytic Degradation of Methylene Blue. Catalysts 2022. [DOI: 10.3390/catal12010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study, two copper(II) complexes, [Cu(C6H8N3S2)2]Cl2 (1) and [Cu(C7H10N3S2)2]Cl2·H2O (2), were synthesized from 2-(thiophen-2-ylmethylene)hydrazine-1-carbothioamide (L1H) and 2-(1-(thiophen-2-yl)ethylidene)hydrazine-1-carbothioamide (L2H) respectively and characterized using various spectroscopic techniques and elemental analyses. The as-prepared complexes were used as single-source precursors for the synthesis of oleylamine-capped (OLA@CuxSy), hexadecylamine-capped (HDA@CuxSy), and dodecylamine-capped (DDA@CuxSy) copper sulphide nanoparticles (NPs) via the thermolysis method at 190 °C and 230 °C and then characterized using powder X-ray diffraction (p-XRD), UV-visible spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The p-XRD diffraction patterns confirmed the formation of crystalline rhombohedral digenite Cu9S5 with the space group R-3m. The TEM images showed the formation of nanoparticles of various shapes including hexagonal, rectangular, cubic, truncated-triangular, and irregularly shaped Cu9S5 nanomaterials. The SEM results showed aggregates and clusters as well as the presence of pores on the surfaces of nanoparticles synthesized at 190 °C. The UV-visible spectroscopy revealed a general blue shift observed in the absorption band edge of the copper sulphide NPs, as compared to bulk CuxSy, with energy band gaps ranging from 2.52 to 3.00 eV. Energy-dispersive X-ray spectroscopy (EDX) confirmed the elemental composition of the Cu9S5 nanoparticles. The nanoparticles obtained at 190 °C and 230 °C were used as catalysts for the photocatalytic degradation of methylene blue (MB) under UV irradiation. Degradation rates varying from 47.1% to 80.0% were obtained after 90 min of exposure time using only 10 mg of the catalyst, indicating that Cu9S5 nanoparticles have potential in the degradation of organic pollutants (dyes).
Collapse
|
3
|
Matesanz AI, Herrero JM, Quiroga AG. Chemical and Biological Evaluation of Thiosemicarbazone-Bearing Heterocyclic Metal Complexes. Curr Top Med Chem 2021; 21:59-72. [PMID: 33092510 DOI: 10.2174/1568026620666201022144004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 01/07/2023]
Abstract
Thiosemicarbazones (TSCNs) constitute a broad family of compounds (R1R2C=N-NH-C(S)- NR3R4), particularly attractive because many of them display some biological activity against a wide range of microorganisms and cancer cells. Their activity can be related to their electronic and structural properties, which offer a rich set of donor atoms for metal coordination and a high electronic delocalization providing different binding modes for biomolecules. Heterocycles such as pyrrole, imidazole and triazole are present in biological molecules such as Vitamine B12 and amino acids and could potentially target multiple biological processes. Considering this, we have explored the chemistry and biological properties of thiosemicarbazones series and their complexes bearing heterocycles such as pyrrole, imidazole, thiazole and triazole. We focus at the chemistry and cytotoxicity of those derivatives to find out the structure activity relationships, and particularly we analyzed those examples with the TSCN units in which the mechanism of action information has been profoundly studied and pathways determined, to promote future studies for heterocycle derivatives.
Collapse
Affiliation(s)
- Ana I Matesanz
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| | - Jorge M Herrero
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| | - Adoración G Quiroga
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Molinaro C, Martoriati A, Pelinski L, Cailliau K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers (Basel) 2020; 12:E2863. [PMID: 33027952 PMCID: PMC7601307 DOI: 10.3390/cancers12102863] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. One small group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes inhibitors of topoisomerases 1 and 2 work by different molecular mechanisms, analyzed herein. They allow genesis of DNA breaks after the formation of a ternary complex, or act in a catalytic mode, often display DNA intercalative properties and ROS production, and sometimes display dual effects. These amplified actions have repercussions on the cell cycle checkpoints and death effectors. Copper complexes of topoisomerase inhibitors are analyzed in a broader synthetic view and in the context of cancer cell mutations. Finally, new emerging treatment aspects are depicted to encourage the expansion of this family of highly active anticancer drugs and to expend their use in clinical trials and future cancer therapy.
Collapse
Affiliation(s)
- Caroline Molinaro
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Lydie Pelinski
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France;
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
5
|
Ceramella J, Mariconda A, Iacopetta D, Saturnino C, Barbarossa A, Caruso A, Rosano C, Sinicropi MS, Longo P. From coins to cancer therapy: Gold, silver and copper complexes targeting human topoisomerases. Bioorg Med Chem Lett 2019; 30:126905. [PMID: 31874823 DOI: 10.1016/j.bmcl.2019.126905] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a complex issue and, even though the prevention basics and therapy have been implemented, it is still the second leading death cause worldwide. With the hope to discover new powerful and safer molecules to fight cancer, many researchers focused their attention on metal-based compounds, starting from the most famous and successfully employed anticancer drug, i.e. cisplatin. The current article aims to report the most recent discoveries about the use of gold, silver and copper complexes as antitumor agents, highlighting their influences on important enzymes, namely human topoisomerases. The latter are fundamental for the cell life and, if overexpressed, strongly implicated in cancer onset and progression. The identification of lead complexes targeting human topoisomerases and gifted with the appropriate chemical and pharmacological properties represents a fecund starting point to obtain new and more effective anticancer molecules.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy.
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Alexia Barbarossa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino - IST, 16132 Genova, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
6
|
Habibi A, Sadat Shandiz SA, Salehzadeh A, Moradi-Shoeili Z. Novel pyridinecarboxaldehyde thiosemicarbazone conjugated magnetite nanoparticulates (MNPs) promote apoptosis in human lung cancer A549 cells. J Biol Inorg Chem 2019; 25:13-22. [PMID: 31630253 DOI: 10.1007/s00775-019-01728-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
The present study highlights the apoptotic activity of magnetic Fe3O4 nanoparticulates functionalized by glutamic acid and 2-pyridinecarboxaldehyde thiosemicarbazone (PTSC) toward human lung epithelial carcinoma A549 cell line. To this aim, the Fe3O4 nanoparticulates were prepared using co-precipitation method. Then, the glutamic acid and Fe3O4 nanoparticulates were conjugated to each other. The product was further functionalized with bio-reactive PTSC moiety. In addition, the synthesized Fe3O4@Glu/PTSC nanoparticulates were characterized by physico-chemical techniques including scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and zeta potential analysis. The effects of in vitro cell viability in Fe3O4@Glu/PTSC nanoparticulate indicated the anti-proliferative properties in a dose-dependent manner (IC50 = 135.6 µM/mL). The high selectivity for tumor cells and far below of activity in HEK293 non-tumorigenic cells is considered as an important feature for this complex (SI, 3.48). Based on the results, PTSC failed to reveal any activity against A549 cells alone. However, Fe3O4 nanoparticulates had some effects in inhibiting the growth of lung cancer cell. Furthermore, Bax and Bcl-2 gene expressions were quantified by real-time PCR method. The expression of Bax increased 1.62-fold, while the expression of Bcl-2 decreased 0.76-fold at 135.6 µM/mL concentration of Fe3O4@Glu/PTSC compared to untreated A549 cells. Furthermore, the Fe3O4@Glu/PTSC nanoparticulate-inducing apoptosis properties were evaluated by Hoechst 33258 staining, Caspase-3 activation assay and Annexin V/propidium iodide staining. The results of the present study suggest that Fe3O4@Glu/PTSC nanoparticulates exhibit effective anti-cancer activity against lung cancer cells.
Collapse
Affiliation(s)
- Alireza Habibi
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Zeinab Moradi-Shoeili
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht, Iran
| |
Collapse
|
7
|
Fetoh A, Mohammed MA, Youssef MM, Abu El‐Reash GM. Synthesis, characterization, cyclic voltammetry and biological studies of Zn (II), Cd (II), Hg (II) and UO
2
2+
complexes of thiosemicarbazone salt. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ahmed Fetoh
- Department of Chemistry, Faculty of ScienceMansoura University Mansoura, P.O. Box 70 Mansoura Egypt
| | - Mahdi A. Mohammed
- Department of Chemistry, Faculty of ScienceMansoura University Mansoura, P.O. Box 70 Mansoura Egypt
- Department of Chemistry, Faculty of Education ‐ Arhab, Sana'a University Sana'a Yemen
| | - Magdy M. Youssef
- Department of Chemistry, Faculty of ScienceMansoura University Mansoura, P.O. Box 70 Mansoura Egypt
| | - Gaber M. Abu El‐Reash
- Department of Chemistry, Faculty of ScienceMansoura University Mansoura, P.O. Box 70 Mansoura Egypt
| |
Collapse
|
8
|
Morris WH, Ngo L, Wilson JT, Medawala W, Brown AR, Conner JD, Fabunmi F, Cashman DJ, Lisic EC, Yu T, Deweese JE, Jiang X. Structural and Metal Ion Effects on Human Topoisomerase IIα Inhibition by α-(N)-Heterocyclic Thiosemicarbazones. Chem Res Toxicol 2018; 32:90-99. [DOI: 10.1021/acs.chemrestox.8b00204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- William H. Morris
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Lana Ngo
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - James T. Wilson
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204-3951, United States
| | - Wathsala Medawala
- Department of Chemistry, Georgia College, Milledgeville, Georgia 31061, United States
| | - Anthony R. Brown
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Jennifer D. Conner
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Florence Fabunmi
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Derek J. Cashman
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Edward C. Lisic
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Tao Yu
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Joseph E. Deweese
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee 37204-3951, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Xiaohua Jiang
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| |
Collapse
|