1
|
Zhang N, Li L, Mohri M, Siebert S, Lütteke T, Louton H, Bednarikova Z, Gazova Z, Nifantiev N, Jandowsky A, Frölich K, Eckert T, Loers G, Petridis AK, Bhunia A, Mohid SA, Scheidig AJ, Liu G, Zhang R, Lochnit G, Siebert HC. Protein - carbohydrate interaction studies using domestic animals as role models support the search of new glycomimetic molecules. Int J Biol Macromol 2024; 279:134951. [PMID: 39179069 DOI: 10.1016/j.ijbiomac.2024.134951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The structural dynamics of the interactions between defensins or lysozymes and various saccharide chains that are covalently linked to lipids or proteins were analyzed in relation to the sub-molecular architecture of the carbohydrate binding sites of lectins. Using tissue materials from rare and endangered domestic animals as well as from dogs it was possible to compare these results with data obtained from a human glioblastoma tissue. The binding mechanisms were analyzed on a cellular and a sub-molecular size level using biophysical techniques (e.g. NMR, AFM, MS) which are supported by molecular modeling tools. This leads to characteristic structural patterns being helpful to understand glyco-biochemical pathways in which galectins, defensins or lysozymes are involved. Carbohydrate chains have a distinct impact on cell differentiation, cell migration and immunological processes. The absence or the presence of sialic acids and the conformational dynamics in glycans are often correlated with zoonoses such as influenza- and coronavirus-infections. Receptor-sensitive glycomimetics could be a solution. The new findings concerning the function of galectin-3 in the nucleus in relation to differentiation processes can be understood when the binding specificity of neuroleptic molecules as well as the interactions between proteins and nucleic acids are describable on a sub-molecular size level.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Lan Li
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Marzieh Mohri
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Simone Siebert
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Thomas Lütteke
- Institut für Veterinärphysiologie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Helen Louton
- Animal Health and Animal Welfare, Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia
| | - Nikolay Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Anabell Jandowsky
- Tierpark Arche Warder, Zentrum für seltene Nutztierrassen e. V., Langwedeler Weg 11, 24646 Warder, Germany
| | - Kai Frölich
- Tierpark Arche Warder, Zentrum für seltene Nutztierrassen e. V., Langwedeler Weg 11, 24646 Warder, Germany
| | - Thomas Eckert
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany; RISCC Research Institute for Scientific Computing and Consulting, Heuchelheim, Germany
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center, Hamburg-Eppendorf, University of Hamburg, Falkenried 94, 20251 Hamburg, Germany
| | - Athanasios K Petridis
- Medical School, Heinrich-Heine-Universität Düsseldorf, Department of Neurosurgery, St. Lukes Hospital, Thessaloniki, Greece
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, EN 80, Kolkata 700091, India
| | - Sk Abdul Mohid
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Sector V, EN 80, Kolkata 700091, India
| | - Axel J Scheidig
- Zoological Institute, Department of Structural Biology, Kiel University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Guiqin Liu
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Günter Lochnit
- Institut für Biochemie, Fachbereich Humanmedizin, Justus-Liebig-Universität Gießen, Friedrichstrasse 24, 35390 Gießen, Germany
| | - Hans-Christian Siebert
- RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany.
| |
Collapse
|
2
|
Siebert HC, Eckert T, Bhunia A, Klatte N, Mohri M, Siebert S, Kozarova A, Hudson JW, Zhang R, Zhang N, Li L, Gousias K, Kanakis D, Yan M, Jiménez-Barbero J, Kožár T, Nifantiev NE, Vollmer C, Brandenburger T, Kindgen-Milles D, Haak T, Petridis AK. Blood pH Analysis in Combination with Molecular Medical Tools in Relation to COVID-19 Symptoms. Biomedicines 2023; 11:biomedicines11051421. [PMID: 37239092 DOI: 10.3390/biomedicines11051421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The global outbreak of SARS-CoV-2/COVID-19 provided the stage to accumulate an enormous biomedical data set and an opportunity as well as a challenge to test new concepts and strategies to combat the pandemic. New research and molecular medical protocols may be deployed in different scientific fields, e.g., glycobiology, nanopharmacology, or nanomedicine. We correlated clinical biomedical data derived from patients in intensive care units with structural biology and biophysical data from NMR and/or CAMM (computer-aided molecular modeling). Consequently, new diagnostic and therapeutic approaches against SARS-CoV-2 were evaluated. Specifically, we tested the suitability of incretin mimetics with one or two pH-sensitive amino acid residues as potential drugs to prevent or cure long-COVID symptoms. Blood pH values in correlation with temperature alterations in patient bodies were of clinical importance. The effects of biophysical parameters such as temperature and pH value variation in relation to physical-chemical membrane properties (e.g., glycosylation state, affinity of certain amino acid sequences to sialic acids as well as other carbohydrate residues and lipid structures) provided helpful hints in identifying a potential Achilles heel against long COVID. In silico CAMM methods and in vitro NMR experiments (including 31P NMR measurements) were applied to analyze the structural behavior of incretin mimetics and SARS-CoV fusion peptides interacting with dodecylphosphocholine (DPC) micelles. These supramolecular complexes were analyzed under physiological conditions by 1H and 31P NMR techniques. We were able to observe characteristic interaction states of incretin mimetics, SARS-CoV fusion peptides and DPC membranes. Novel interaction profiles (indicated, e.g., by 31P NMR signal splitting) were detected. Furthermore, we evaluated GM1 gangliosides and sialic acid-coated silica nanoparticles in complex with DPC micelles in order to create a simple virus host cell membrane model. This is a first step in exploring the structure-function relationship between the SARS-CoV-2 spike protein and incretin mimetics with conserved pH-sensitive histidine residues in their carbohydrate recognition domains as found in galectins. The applied methods were effective in identifying peptide sequences as well as certain carbohydrate moieties with the potential to protect the blood-brain barrier (BBB). These clinically relevant observations on low blood pH values in fatal COVID-19 cases open routes for new therapeutic approaches, especially against long-COVID symptoms.
Collapse
Affiliation(s)
- Hans-Christian Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Thomas Eckert
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- RISCC-Research Institute for Scientific Computing and Consulting, Ludwig-Schunk-Str. 15, 35452 Heuchelheim, Germany
- Institut für Veterinärphysiologie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Nele Klatte
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
| | - Marzieh Mohri
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Simone Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Anna Kozarova
- Department of Biomedical Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - John W Hudson
- Department of Biomedical Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ning Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Lan Li
- Klinik für Neurochirurgie, Alfried Krupp Krankenhaus, Rüttenscheid, Alfried-Krupp-Straße 21, 45131 Essen, Germany
| | - Konstantinos Gousias
- Klinik für Neurochirurgie, Klinikum Lünen, St.-Marien-Hospital, Akad. Lehrkrankenhaus der Westfälische Wilhelms-Universität Münster, 44534 Lünen, Germany
| | - Dimitrios Kanakis
- Institute of Pathology, University of Nicosia Medical School, 2408 Egkomi, Cyprus
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | | | - Tibor Kožár
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Timo Brandenburger
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Detlef Kindgen-Milles
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Thomas Haak
- Diabetes Klinik Bad Mergentheim, Theodor-Klotzbücher-Str. 12, 97980 Bad Mergentheim, Germany
| | - Athanasios K Petridis
- Medical School, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Eckert T, von Cosel J, Kamps B, Siebert HC, Zhang R, Zhang N, Gousias K, Petridis AK, Kanakis D, Falahati K. Evidence for Quantum Chemical Effects in Receptor-Ligand Binding Between Integrin and Collagen Fragments - A Computational Investigation With an Impact on Tissue Repair, Neurooncolgy and Glycobiology. Front Mol Biosci 2021; 8:756701. [PMID: 34869589 PMCID: PMC8637888 DOI: 10.3389/fmolb.2021.756701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
The collagen-integrin interactions are mediated by the doubly charged Mg2+ cation. In nature this cation seems to have the optimal binding strength to stabilize this complex. It is essential that the binding is not too weak so that the complex becomes unstable, however, it is also of importance that the ligand-receptor binding is still labile enough so that the ligand can separate from the receptor in a suited environment. In the case of crystal growing for experimentally useful integrin-collagen fragment complexes it turned out that Co2+ cations are ideal mediators to form stable complexes for such experiments. Although, one can argue that Co2+ is in this context an artificial cation, however, it is now of special interest to test the impact of this cation in cell-culture experiments focusing on integrin-ligand interactions. In order to examine, in particular, the role cobalt ions we have studied a Co2+ based model system using quantum chemical calculations. Thereby, we have shown that hybrid and long-range corrected functional, which are approximations provide already a sufficient level of accuracy. It is of interest to study a potential impact of cations on the binding of collagen-fragments including collagens from various species because different integrins have numerous biological functions (e.g. Integrin - NCAM (Neural cell adhesion molecule) interactions) and are triggered by intact and degraded collagen fragments. Since integrin-carbohydrate interactions play a key role when bio-medical problems such as tumor cell adhesion and virus-host cell infections have to be addressed on a sub-molecular level it is essential to understand the interactions with heavy-metal ions also at the sub-atomic level. Our findings open new routes, especially, in the fields of tissue repair and neuro-oncology for example for cell-culture experiments with different ions. Since Co2+ ions seem to bind stronger to integrin than Mg2+ ions it should be feasible to exchange these cations in suited tumor tissues although different cations are present in other metalloproteins which are active in such tissues. Various staining methods can be applied to document the interactions of integrins with carbohydrate chains and other target structures. Thereby, it is possible to study a potential impact of these interactions on biological functions. It was therefore necessary to figure out first which histological-glycobiological experimental settings of tumor cells are suited for our purpose. Since the interactions of several metalloproteins (integrin, ADAM12) with polysialic acid and the HNK-1 epitope play a crucial role in tumor tissues selected staining methods are proper tools to obtain essential information about the impact of the metal ions under study.
Collapse
Affiliation(s)
- Thomas Eckert
- RISCC Research Institute for Scientific Computing and Consulting, Heuchelheim, Germany
- Institut für Veterinärphysiologie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig- Universität Gießen, Gießen, Germany
- Fachbereich Biologie und Chemie, Hochschule Fresenius University of Applied Sciences, Idstein, Germany
| | - Jan von Cosel
- RISCC Research Institute for Scientific Computing and Consulting, Heuchelheim, Germany
| | - Benedict Kamps
- RISCC Research Institute for Scientific Computing and Consulting, Heuchelheim, Germany
- Fachbereich Biologie und Chemie, Hochschule Fresenius University of Applied Sciences, Idstein, Germany
| | | | - Ruiyan Zhang
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Kiel, Germany
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Ning Zhang
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Kiel, Germany
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, China
| | - Konstantinos Gousias
- Klinik für Neurochirurgie, Klinikum Lünen, St.-Marien-Hospital, Akad. Lehrkrankenhaus der Westf. Wilhelms-Universität Münster, Lünen, Germany
| | | | - Dimitrios Kanakis
- Institute of Pathology, University of Nicosia Medical School, Nicosia, Cyprus
| | - Konstantin Falahati
- RISCC Research Institute for Scientific Computing and Consulting, Heuchelheim, Germany
| |
Collapse
|
4
|
Efficacy of Chondroprotective Food Supplements Based on Collagen Hydrolysate and Compounds Isolated from Marine Organisms. Mar Drugs 2021; 19:md19100542. [PMID: 34677442 PMCID: PMC8541357 DOI: 10.3390/md19100542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis belongs to the most common joint diseases in humans and animals and shows increased incidence in older patients. The bioactivities of collagen hydrolysates, sulfated glucosamine and a special fatty acid enriched dog-food were tested in a dog patient study of 52 dogs as potential therapeutic treatment options in early osteoarthritis. Biophysical, biochemical, cell biological and molecular modeling methods support that these well-defined substances may act as effective nutraceuticals. Importantly, the applied collagen hydrolysates as well as sulfated glucosamine residues from marine organisms were strongly supported by both an animal model and molecular modeling of intermolecular interactions. Molecular modeling of predicted interaction dynamics was evaluated for the receptor proteins MMP-3 and ADAMTS-5. These proteins play a prominent role in the maintenance of cartilage health as well as innate and adapted immunity. Nutraceutical data were generated in a veterinary clinical study focusing on mobility and agility. Specifically, key clinical parameter (MMP-3 and TIMP-1) were obtained from blood probes of German shepherd dogs with early osteoarthritis symptoms fed with collagen hydrolysates. Collagen hydrolysate, a chondroprotective food supplement was examined by high resolution NMR experiments. Molecular modeling simulations were used to further characterize the interaction potency of collagen fragments and glucosamines with protein receptor structures. Potential beneficial effects of collagen hydrolysates, sulfated glycans (i.e., sulfated glucosamine from crabs and mussels) and lipids, especially, eicosapentaenoic acid (extracted from fish oil) on biochemical and physiological processes are discussed here in the context of human and veterinary medicine.
Collapse
|
5
|
Zhang R, Jin L, Zhang N, Petridis AK, Eckert T, Scheiner-Bobis G, Bergmann M, Scheidig A, Schauer R, Yan M, Wijesundera SA, Nordén B, Chatterjee BK, Siebert HC. The Sialic Acid-Dependent Nematocyst Discharge Process in Relation to Its Physical-Chemical Properties Is A Role Model for Nanomedical Diagnostic and Therapeutic Tools. Mar Drugs 2019; 17:E469. [PMID: 31409009 PMCID: PMC6722915 DOI: 10.3390/md17080469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Formulas derived from theoretical physics provide important insights about the nematocyst discharge process of Cnidaria (Hydra, jellyfishes, box-jellyfishes and sea-anemones). Our model description of the fastest process in living nature raises and answers questions related to the material properties of the cell- and tubule-walls of nematocysts including their polysialic acid (polySia) dependent target function. Since a number of tumor-cells, especially brain-tumor cells such as neuroblastoma tissues carry the polysaccharide chain polySia in similar concentration as fish eggs or fish skin, it makes sense to use these findings for new diagnostic and therapeutic approaches in the field of nanomedicine. Therefore, the nematocyst discharge process can be considered as a bionic blue-print for future nanomedical devices in cancer diagnostics and therapies. This approach is promising because the physical background of this process can be described in a sufficient way with formulas presented here. Additionally, we discuss biophysical and biochemical experiments which will allow us to define proper boundary conditions in order to support our theoretical model approach. PolySia glycans occur in a similar density on malignant tumor cells than on the cell surfaces of Cnidarian predators and preys. The knowledge of the polySia-dependent initiation of the nematocyst discharge process in an intact nematocyte is an essential prerequisite regarding the further development of target-directed nanomedical devices for diagnostic and therapeutic purposes. The theoretical description as well as the computationally and experimentally derived results about the biophysical and biochemical parameters can contribute to a proper design of anti-tumor drug ejecting vessels which use a stylet-tubule system. Especially, the role of nematogalectins is of interest because these bridging proteins contribute as well as special collagen fibers to the elastic band properties. The basic concepts of the nematocyst discharge process inside the tubule cell walls of nematocysts were studied in jellyfishes and in Hydra which are ideal model organisms. Hydra has already been chosen by Alan Turing in order to figure out how the chemical basis of morphogenesis can be described in a fundamental way. This encouraged us to discuss the action of nematocysts in relation to morphological aspects and material requirements. Using these insights, it is now possible to discuss natural and artificial nematocyst-like vessels with optimized properties for a diagnostic and therapeutic use, e.g., in neurooncology. We show here that crucial physical parameters such as pressure thresholds and elasticity properties during the nematocyst discharge process can be described in a consistent and satisfactory way with an impact on the construction of new nanomedical devices.
Collapse
Affiliation(s)
- Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Li Jin
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ning Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Athanasios K Petridis
- Neurochirurgische Klinik, Universität Düsseldorf, Geb. 11.54, Moorenstraße 5, Düsseldorf 40255, Germany
| | - Thomas Eckert
- Institut für Veterinärphysiolgie und-Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- RISCC-Research Institute for Scientific Computing and Consulting, Ludwig-Schunk-Str. 15, 35452 Heuchelheim, Germany
| | - Georgios Scheiner-Bobis
- Institut für Veterinärphysiolgie und-Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Martin Bergmann
- Institut für Veterinäranatomie, Histologie und Embryologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 98, 35392 Giessen, Germany
| | - Axel Scheidig
- Zoologisches Institut-Strukturbiologie, Zentrum für Biochemie und Molekularbiologie, Christian-Albrechts-Universität, Am Botanischen Garten 19, 24118 Kiel, Germany
| | - Roland Schauer
- Biochemisches Institut, Christian-Albrechts Universität Kiel, Olshausenstrasse 40, Kiel 24098, Germany
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Samurdhi A Wijesundera
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Bengt Nordén
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Barun K Chatterjee
- Department of Physics, Bose Institute, 93/1, A P C Road, Kolkata-700009, India
| | - Hans-Christian Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany.
| |
Collapse
|
6
|
Zhang R, Zhang N, Mohri M, Wu L, Eckert T, Krylov VB, Antosova A, Ponikova S, Bednarikova Z, Markart P, Günther A, Norden B, Billeter M, Schauer R, Scheidig AJ, Ratha BN, Bhunia A, Hesse K, Enani MA, Steinmeyer J, Petridis AK, Kozar T, Gazova Z, Nifantiev NE, Siebert HC. Nanomedical Relevance of the Intermolecular Interaction Dynamics-Examples from Lysozymes and Insulins. ACS OMEGA 2019; 4:4206-4220. [PMID: 30847433 PMCID: PMC6398350 DOI: 10.1021/acsomega.8b02471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 06/01/2023]
Abstract
Insulin and lysozyme share the common features of being prone to aggregate and having biomedical importance. Encapsulating lysozyme and insulin in micellar nanoparticles probably would prevent aggregation and facilitate oral drug delivery. Despite the vivid structural knowledge of lysozyme and insulin, the environment-dependent oligomerization (dimer, trimer, and multimer) and associated structural dynamics remain elusive. The knowledge of the intra- and intermolecular interaction profiles has cardinal importance for the design of encapsulation protocols. We have employed various biophysical methods such as NMR spectroscopy, X-ray crystallography, Thioflavin T fluorescence, and atomic force microscopy in conjugation with molecular modeling to improve the understanding of interaction dynamics during homo-oligomerization of lysozyme (human and hen egg) and insulin (porcine, human, and glargine). The results obtained depict the atomistic intra- and intermolecular interaction details of the homo-oligomerization and confirm the propensity to form fibrils. Taken together, the data accumulated and knowledge gained will further facilitate nanoparticle design and production with insulin or lysozyme-related protein encapsulation.
Collapse
Affiliation(s)
- Ruiyan Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Ning Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
| | - Marzieh Mohri
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Lisha Wu
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Thomas Eckert
- Department
of Chemistry and Biology, University of
Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- Institut
für Veterinärphysiolgie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Vadim B. Krylov
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Andrea Antosova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Slavomira Ponikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Philipp Markart
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
- Pneumology,
Heart-Thorax-Center Fulda, Pacelliallee 4, 36043 Fulda, Germany
| | - Andreas Günther
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
| | - Bengt Norden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Martin Billeter
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 40530 Gothenburg, Sweden
| | - Roland Schauer
- Institute
of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Axel J. Scheidig
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Bhisma N. Ratha
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Anirban Bhunia
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Karsten Hesse
- Tierarztpraxis
Dr. Karsten Hesse, Rathausstraße
16, 35460 Stauffenberg, Germany
| | - Mushira Abdelaziz Enani
- Infectious
Diseases Division, Department of Medicine, King Fahad Medical City, P.O. Box 59046, 11525 Riyadh, Kingdom of Saudi
Arabia
| | - Jürgen Steinmeyer
- Laboratory
for Experimental Orthopaedics, Department of Orthopaedics, Justus-Liebig-University, Paul-Meimberg-Str. 3, D-35392 Giessen, Germany
| | - Athanasios K. Petridis
- Neurochirurgische
Klinik, Universität Düsseldorf, Geb. 11.54, Moorenstraße 5, 40255 Düsseldorf, Germany
| | - Tibor Kozar
- Center
for Interdisciplinary Biosciences, TIP-UPJS, Jesenna 5, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Nikolay E. Nifantiev
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Hans-Christian Siebert
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
7
|
A new transcriptome and transcriptome profiling of adult and larval tissue in the box jellyfish Alatina alata: an emerging model for studying venom, vision and sex. BMC Genomics 2016; 17:650. [PMID: 27535656 PMCID: PMC4989536 DOI: 10.1186/s12864-016-2944-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/18/2016] [Indexed: 12/28/2022] Open
Abstract
Background Cubozoans (box jellyfish) are cnidarians that have evolved a number of distinguishing features. Many cubozoans have a particularly potent sting, effected by stinging structures called nematocysts; cubozoans have well-developed light sensation, possessing both image-forming lens eyes and light-sensitive eye spots; and some cubozoans have complex mating behaviors, including aggregations, copulation and internal fertilization. The cubozoan Alatina alata is emerging as a cnidarian model because it forms predictable monthly nearshore breeding aggregations in tropical to subtropical waters worldwide, making both adult and larval material reliably accessible. To develop resources for A. alata, this study generated a functionally annotated transcriptome of adult and larval tissue, applying preliminary differential expression analyses to identify candidate genes involved in nematogenesis and venom production, vision and extraocular sensory perception, and sexual reproduction, which for brevity we refer to as “venom”, “vision” and “sex”. Results We assembled a transcriptome de novo from RNA-Seq data pooled from multiple body parts (gastric cirri, ovaries, tentacle (with pedalium base) and rhopalium) of an adult female A. alata medusa and larval planulae. Our transcriptome comprises ~32 K transcripts, after filtering, and provides a basis for analyzing patterns of gene expression in adult and larval box jellyfish tissues. Furthermore, we annotated a large set of candidate genes putatively involved in venom, vision and sex, providing an initial molecular characterization of these complex features in cubozoans. Expression profiles and gene tree reconstruction provided a number of preliminary insights into the putative sites of nematogenesis and venom production, regions of phototransduction activity and fertilization dynamics in A. alata. Conclusions Our Alatina alata transcriptome significantly adds to the genomic resources for this emerging cubozoan model. This study provides the first annotated transcriptome from multiple tissues of a cubozoan focusing on both the adult and larvae. Our approach of using multiple body parts and life stages to generate this transcriptome effectively identified a broad range of candidate genes for the further study of coordinated processes associated with venom, vision and sex. This new genomic resource and the candidate gene dataset are valuable for further investigating the evolution of distinctive features of cubozoans, and of cnidarians more broadly. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2944-3) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Zhang R, Loers G, Schachner M, Boelens R, Wienk H, Siebert S, Eckert T, Kraan S, Rojas-Macias MA, Lütteke T, Galuska SP, Scheidig A, Petridis AK, Liang S, Billeter M, Schauer R, Steinmeyer J, Schröder JM, Siebert HC. Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides. ChemMedChem 2016; 11:990-1002. [PMID: 27136597 DOI: 10.1002/cmdc.201500609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/01/2016] [Indexed: 02/05/2023]
Abstract
Polysialic acid (polySia) and polySia glycomimetic molecules support nerve cell regeneration, differentiation, and neuronal plasticity. With a combination of biophysical and biochemical methods, as well as data mining and molecular modeling techniques, it is possible to correlate specific ligand-receptor interactions with biochemical processes and in vivo studies that focus on the potential therapeutic impact of polySia, polySia glycomimetics, and sulfated polysaccharides in neuronal diseases. With this strategy, the receptor interactions of polySia and polySia mimetics can be understood on a submolecular level. As the HNK-1 glycan also enhances neuronal functions, we tested whether similar sulfated oligo- and polysaccharides from seaweed could be suitable, in addition to polySia, for finding potential new routes into patient care focusing on an improved cure for various neuronal diseases. The knowledge obtained here on the structural interplay between polySia or sulfated polysaccharides and their receptors can be exploited to develop new drugs and application routes for the treatment of neurological diseases and dysfunctions.
Collapse
Affiliation(s)
- Ruiyan Zhang
- RI-B-NT: Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148, Kiel, Germany
- Zoological Institute, Department of Structural Biology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, University of Hamburg, Falkenried 94, 20251, Hamburg, Germany
| | - Melitta Schachner
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, University of Hamburg, Falkenried 94, 20251, Hamburg, Germany
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Hans Wienk
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Simone Siebert
- RI-B-NT: Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148, Kiel, Germany
| | - Thomas Eckert
- Institute of Veterinary Physiology and Biochemistry, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-Universität Gießen, Frankfurter Str. 106, 35392, Gießen, Germany
| | - Stefan Kraan
- Ocean Harvest Technology Ltd., N17 Business Park, Milltown, County Galway, Ireland
| | - Miguel A Rojas-Macias
- Institute of Veterinary Physiology and Biochemistry, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
| | - Thomas Lütteke
- Institute of Veterinary Physiology and Biochemistry, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392, Gießen, Germany
| | - Sebastian P Galuska
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-Universität Gießen, Friedrichstr. 24, 35392, Gießen, Germany
| | - Axel Scheidig
- Zoological Institute, Department of Structural Biology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Athanasios K Petridis
- Neurosurgery Clinic, University Düsseldorf, Moorenstraße 5, 40255, Düsseldorf, Germany
| | - Songping Liang
- College of Life Sciences, Hunan Normal University, 410081, Changsha, China
| | - Martin Billeter
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 100, 40530, Gothenburg, Sweden
| | - Roland Schauer
- Institute of Biochemistry, Kiel University, Olshausenstr. 40, 24098, Kiel, Germany
| | - Jürgen Steinmeyer
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University Hospital Giessen and Marburg GmbH, Paul-Meimberg-Str. 3, 35392, Gießen, Germany
| | - Jens-Michael Schröder
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Hans-Christian Siebert
- RI-B-NT: Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148, Kiel, Germany.
| |
Collapse
|
9
|
Schadow S, Siebert HC, Lochnit G, Kordelle J, Rickert M, Steinmeyer J. Collagen metabolism of human osteoarthritic articular cartilage as modulated by bovine collagen hydrolysates. PLoS One 2013; 8:e53955. [PMID: 23342047 PMCID: PMC3546930 DOI: 10.1371/journal.pone.0053955] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/04/2012] [Indexed: 02/07/2023] Open
Abstract
Destruction of articular cartilage is a characteristic feature of osteoarthritis (OA). Collagen hydrolysates are mixtures of collagen peptides and have gained huge public attention as nutriceuticals used for prophylaxis of OA. Here, we evaluated for the first time whether different bovine collagen hydrolysate preparations indeed modulate the metabolism of collagen and proteoglycans from human OA cartilage explants and determined the chemical composition of oligopeptides representing collagen fragments. Using biophysical techniques, like MALDI-TOF-MS, AFM, and NMR, the molecular weight distribution and aggregation behavior of collagen hydrolysates from bovine origin (CH-Alpha®, Peptan™ B 5000, Peptan™ B 2000) were determined. To investigate the metabolism of human femoral OA cartilage, explants were obtained during knee replacement surgery. Collagen synthesis of explants as modulated by 0–10 mg/ml collagen hydrolysates was determined using a novel dual radiolabeling procedure. Proteoglycans, NO, PGE2, MMP-1, -3, -13, TIMP-1, collagen type II, and cell viability were determined in explant cultures. Groups of data were analyzed using ANOVA and the Friedman test (n = 5–12). The significance was set to p≤0.05. We found that collagen hydrolysates obtained from different sources varied with respect to the width of molecular weight distribution, average molecular weight, and aggregation behavior. None of the collagen hydrolysates tested stimulated the biosynthesis of collagen. Peptan™ B 5000 elevated NO and PGE2 levels significantly but had no effect on collagen or proteoglycan loss. All collagen hydrolysates tested proved not to be cytotoxic. Together, our data demonstrate for the first time that various collagen hydrolysates differ with respect to their chemical composition of collagen fragments as well as by their pharmacological efficacy on human chondrocytes. Our study underscores the importance that each collagen hydrolysate preparation should first demonstrate its pharmacological potential both in vitro and in vivo before being used for both regenerative medicine and prophylaxis of OA.
Collapse
Affiliation(s)
- Saskia Schadow
- Department of Orthopedics, University Hospital Giessen and Marburg, Giessen, Germany
| | | | - Günter Lochnit
- Department of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jens Kordelle
- Agaplesion Evangelical Hospital Mittelhessen, Giessen, Germany
| | - Markus Rickert
- Department of Orthopedics, University Hospital Giessen and Marburg, Giessen, Germany
| | - Jürgen Steinmeyer
- Department of Orthopedics, University Hospital Giessen and Marburg, Giessen, Germany
- * E-mail:
| |
Collapse
|
10
|
Stötzel S, Schurink M, Wienk H, Siebler U, Burg-Roderfeld M, Eckert T, Kulik B, Wechselberger R, Sewing J, Steinmeyer J, Oesser S, Boelens R, Siebert HC. Molecular Organization of Various Collagen Fragments as Revealed by Atomic Force Microscopy and Diffusion-Ordered NMR Spectroscopy. Chemphyschem 2012; 13:3117-25. [DOI: 10.1002/cphc.201200284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Indexed: 12/22/2022]
|