1
|
Lin Y, Ren G, Zhao J, Shao Y, He B, Tang X, Sha O, Zhao W, Liu Q, Xu L, Lu T. Long-Term Protection Elicited by an Inactivated Vaccine Supplemented with a Water-Based Adjuvant against Infectious Hematopoietic Necrosis Virus in Rainbow Trout (Oncorhynchus mykiss). Microbiol Spectr 2022; 10:e0324522. [PMID: 36409094 PMCID: PMC9769665 DOI: 10.1128/spectrum.03245-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
Previous inactivated vaccines against infectious hematopoietic necrosis (IHN) usually had a strong early immune protective effect but failed to provide long-term protection in rainbow trout (Oncorhynchus mykiss). To find a method for stabilizing the desired protective effect of IHN vaccines, we assessed the immune enhancement effect of four adjuvants on formaldehyde inactivated vaccine for IHN at 60 days postvaccination (dpv). The efficacy of a two-dose vaccination with the candidate adjuvant-formaldehyde inactivated vaccine for IHN was evaluated in terms of early protection and long-term protection (30 to 285 dpv). Neutralizing antibody titers were also measured at each time point. The Montanide GEL 02 PR (Gel 02) adjuvant significantly enhanced the immune protection provided by the IHN inactivated vaccine, whereas the immune-boosting effect of the other tested adjuvants lacked statistical significance. Both tested Gel 02-adjuvanted IHN inactivated vaccine dosages had a strong immune protection effect within 2 months postvaccination, with a relative percent of survival (RPS) of 89.01% to 100%, and the higher dosage provided complete protection at 204 dpv and a RPS of 60.79% on 285 dpv by reducing viral titers in rainbow trout. The neutralizing antibodies were observed only in vaccinated fish on 30 and 60 dpv. Through compatibility with an appropriate adjuvant, the highly immune protective effect of an IHN inactivated vaccine was prolonged from 60 dpv to at least 284 dpv; this novel adjuvant-IHN inactivated vaccine has promise as a commercial vaccine that provides the best available and longest duration of protection against IHN to rainbow trout. IMPORTANCE Infectious hematopoietic necrosis virus (IHNV) is one of the most serious pathogens threatening the global salmon and trout industry. However, there is currently only one commercialized infectious hematopoietic necrosis (IHN) vaccine, and it is inadequate for solving the global IHN problem. In this study, a promising adjuvanted inactivated vaccine with long-term protection was developed and comprehensively studied. We confirmed the presence of a late antiviral response stage in vaccinated rainbow trout that lacked detectable neutralizing antibodies, which are commonly recognized to be responsible for long-term specific protection in mammals. These findings further our understanding of unique features of fish immune systems and could lead to improved prevention and control of fish diseases.
Collapse
Affiliation(s)
- Yujie Lin
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
- University of Dalian Ocean University, College of Fisheries and Life Sciences, Dalian, China
| | - Guangming Ren
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Jingzhuang Zhao
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Yizhi Shao
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Baoquan He
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Xin Tang
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Ou Sha
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Wenwen Zhao
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
- University of Dalian Ocean University, College of Fisheries and Life Sciences, Dalian, China
| | - Qi Liu
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Liming Xu
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Tongyan Lu
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| |
Collapse
|
2
|
Panebra A, Lillehoj HS. Eimeria tenella Elongation Factor-1α (EF-1α) Coadministered with Chicken IL-7 (chIL-7) DNA Vaccine Emulsified in Montanide Gel 01 Adjuvant Enhanced the Immune Response to E. acervulina Infection in Broiler Chickens. Avian Dis 2020; 63:342-350. [PMID: 31251536 DOI: 10.1637/11976-092418-reg.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/07/2019] [Indexed: 11/05/2022]
Abstract
The current study was undertaken to assess the vaccine efficacy of Eimeria tenella EF-1α/chicken IL-7 (chIL-7) DNA vaccine when administered with Montanide Gel 01 adjuvant against live Eimeria acervulina challenge in commercial broiler chickens. The criteria used for the evaluation of vaccine efficacy were weight gain, duodenal lesion scores, oocyst counts, humoral antibody response, and duodenal proinflammatory cytokine gene expression. Chickens vaccinated with EF-1α (100 µg)/chIL-7 (20 µg) in Gel 01 PR adjuvant showed body weight gain similar to the uninfected control and higher oocyst shedding, a lower gut lesion score, and higher proinflammatory cytokine gene expression than did the infected controls. Moreover, chickens vaccinated with chIL-7 (20 µg) in Gel 01 PR adjuvant shed fewer oocysts with reduced gut lesion scores and produced higher levels of anti-EF-1α serum antibody than did the infected control. Chickens vaccinated with EF-1α (50 µg)/chIL-7 (20 µg) in Gel 01 PR adjuvant showed higher weight gains than did the infected control and shed significantly fewer oocysts than the infected control. Furthermore, chickens vaccinated with EF-1α (100 µg) in Gel 01 PR adjuvant demonstrated the lowest anti-EF-1α serum antibody levels. This study demonstrated the beneficial effects of using EF-1α and/or host cytokine chIL-7 DNA vaccine together with Gel 01 PR adjuvant to improve T-cell-mediated effector function in broiler chickens challenged with live E. acervulina.
Collapse
Affiliation(s)
- Alfredo Panebra
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705,
| |
Collapse
|
3
|
Xu Y, Wang Q, Wei B, Huang X, Wen Y, Yan Q, Ma X, Zhao Q, Cao S, Huang Y, Wen X, Han X, Bai Y, Wu R. Enhanced Immune Responses Against Japanese Encephalitis Virus Infection Using Japanese Encephalitis Live-Attenuated Virus Adjuvanted with Montanide GEL 01 ST in Mice. Vector Borne Zoonotic Dis 2019; 19:835-843. [PMID: 31314706 DOI: 10.1089/vbz.2018.2419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Japanese encephalitis virus (JEV) is one of the major causes of acute encephalitis in human and animal. To prevent JEV infection, an effective live-attenuated vaccine is needed. In the article, JEV attenuated strain, SCYA201201 of GI genotype, which was mixed with 10% concentrate GEL 01 ST adjuvant (Montanide™ GEL 01 ST), was selected for a vaccine candidate and its immunogenicity was evaluated in mice. Our results showed that JEV mixed with GEL 01 ST elicited production of both IgG1 and IgG2a antibodies, and enhanced virus-specific crossprotective intergenotypic response in mice. Proliferation of splenocytes was observed in all immunized groups and a relatively higher proliferation activity was detected in JEV mixed with GEL 01 ST group (p < 0.05). In the JEV + 10% GEL 01 ST vaccinated group, the proportion of CD4+ T cells in spleen was significantly higher than that of control group (p < 0.05), and the yields of interleukin (IL)-2, IL-4, and interferon-γ in the splenocyte supernatant were also significantly higher than that of control group (p < 0.05). Moreover, complete protection was provided after JEV challenge in mice in JEV mixed with GEL 01 ST group, and early immunity was detected in those mice immunized with JEV mixed with GEL 01 ST. These findings confirm that GEL 01 ST can enhance JEV live-attenuated immunogenicity, and JEV +10% GEL 01 ST used as vaccine candidates provide protection against JEV infection in a mouse model, which could be used as potential vaccine candidates in pig.
Collapse
Affiliation(s)
- Yixuan Xu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Wang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bowen Wei
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Yong Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Bai
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
4
|
Zhu B, He T, Gao X, Shi M, Sun H. Evaluation and characteristics of immunological adjuvant activity of purified fraction of Albizia julibrissin saponins. Immunol Invest 2018; 48:283-302. [DOI: 10.1080/08820139.2018.1523923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Binnian Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang China
| | - Tianyu He
- College of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Xiangyun Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang China
| | - Minghua Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang China
| |
Collapse
|
5
|
Li X, Galliher-Beckley A, Wang L, Nietfeld J, Feng W, Shi J. Comparison of Immune Responses in Pigs Infected with Chinese Highly Pathogenic PRRS Virus Strain HV and North American Strain NADC-20. Open Virol J 2017; 11:73-82. [PMID: 28839507 PMCID: PMC5543616 DOI: 10.2174/1874357901711010073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/01/2016] [Accepted: 02/06/2017] [Indexed: 11/22/2022] Open
Abstract
Introduction: Chinese HP-PRRSV characterized by high morbidity and mortality of all ages of pigs emerged since 2006 in China. The immune response of HP-PRRSV was never compared with conventional low pathogenic PRRSV strain. Objective: In this study, we compared the immune responses elicited by a Chinese HP-PRRSV strain HV and a North American RRSV strain NADC20 infections. Result: Pigs infected with NADC-20 showed significantly higher Ab titers than HV-PRRSV infected pigs at 9 DPI. Infection with HV-PRRSV induced a significantly higher levels of TNF-α and IL-10 in both sera and lung tissues and higher IFN-α and IFN-γ in the serum. Flow cytometry analysis showed that HV-PRRSV infected pigs generated significantly higher frequencies of NK cells in the peripheral blood and Th/memory, CTLs, and T-reg cells in the lung as compared with NADC-20 infected pigs. Conclusion: This study demonstrates that different immunity profiles were elicited by HV-PRRSV and NADC-20, and these differences may contribute to the distinct pathogenesis of HV-PRRSV and NADC-20.
Collapse
Affiliation(s)
- X Li
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - A Galliher-Beckley
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - L Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - J Nietfeld
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - W Feng
- State Key Laboratory of Agrobiotechnology, China Agriculture University, Beijing, China
| | - J Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
6
|
Tabynov K, Sansyzbay A, Tulemissova Z, Tabynov K, Dhakal S, Samoltyrova A, Renukaradhya GJ, Mambetaliyev M. Inactivated porcine reproductive and respiratory syndrome virus vaccine adjuvanted with Montanide™ Gel 01 ST elicits virus-specific cross-protective inter-genotypic response in piglets. Vet Microbiol 2016; 192:81-89. [PMID: 27527768 PMCID: PMC7111292 DOI: 10.1016/j.vetmic.2016.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022]
Abstract
BEI-inactivated PRRSV candidate vaccine was developed using local Kazakh viral strains. Immune response and clinical disease were compared with a commercial PRRSV vaccine. Compared to commercial vaccine our vaccine induced better cross-protective response. Use of a potent adjuvant and local PRRSV strains in the vaccine formulation is beneficial.
The efficacy of a novel BEI-inactivated porcine reproductive and respiratory syndrome virus (PRRSV) candidate vaccine in pigs, developed at RIBSP Republic of Kazakhstan and delivered with an adjuvant Montanide™ Gel 01 ST (D/KV/ADJ) was compared with a commercial killed PRRSV vaccine (NVDC-JXA1, C/KV/ADJ) used widely in swine herds of the Republic of Kazakhstan. Clinical parameters (body temperature and respiratory disease scores), virological and immunological profiles [ELISA and virus neutralizing (VN) antibody titers], macroscopic lung lesions and viral load in the lungs (quantitative real-time PCR and cell culture assay) were assessed in vaccinated and both genotype 1 and 2 PRRSV challenged pigs. Our results showed that the commercial vaccine failed to protect pigs adequately against the clinical disease, viremia and lung lesions caused by the challenged field isolates, Kazakh strains of PRRSV type 1 and type 2 genotypes. In contrast, clinical protection, absence of viremia and lung lesions in D/KV/ADJ vaccinated pigs was associated with generation of VN antibodies in both homologous vaccine strain LKZ/2010 (PRRSV type 2) and a heterogeneous type 1 PRRSV strain (CM/08) challenged pigs. Thus, our data indicated the induction of cross-protective VN antibodies by D/KV/ADJ vaccine, and importantly demonstrated that an inactivated PRRSV vaccine could also induce cross-protective response across the viral genotype.
Collapse
Affiliation(s)
- Kairat Tabynov
- Research Institute for Biological Safety Problems (RIBSP), Science Committee, Ministry of Education and Science of the Republic of Kazakhstan, Zhambylskaya oblast, Kordaiskiy rayon, Gvardeiskiy 080409, Kazakhstan.
| | - Abylay Sansyzbay
- Research Institute for Biological Safety Problems (RIBSP), Science Committee, Ministry of Education and Science of the Republic of Kazakhstan, Zhambylskaya oblast, Kordaiskiy rayon, Gvardeiskiy 080409, Kazakhstan
| | - Zhanara Tulemissova
- Faculty of Veterinary Science, Department of Biological Safety, Kazakh National Agrarian University (KazNAU), Almaty 050010, Kazakhstan
| | - Kaissar Tabynov
- Research Institute for Biological Safety Problems (RIBSP), Science Committee, Ministry of Education and Science of the Republic of Kazakhstan, Zhambylskaya oblast, Kordaiskiy rayon, Gvardeiskiy 080409, Kazakhstan
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University (OSU), Wooster, OH 44691, USA
| | - Aigul Samoltyrova
- Research Institute for Biological Safety Problems (RIBSP), Science Committee, Ministry of Education and Science of the Republic of Kazakhstan, Zhambylskaya oblast, Kordaiskiy rayon, Gvardeiskiy 080409, Kazakhstan
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University (OSU), Wooster, OH 44691, USA
| | - Muratbay Mambetaliyev
- Research Institute for Biological Safety Problems (RIBSP), Science Committee, Ministry of Education and Science of the Republic of Kazakhstan, Zhambylskaya oblast, Kordaiskiy rayon, Gvardeiskiy 080409, Kazakhstan
| |
Collapse
|
7
|
Galliher-Beckley A, Li X, Bates JT, Madera R, Waters A, Nietfeld J, Henningson J, He D, Feng W, Chen R, Shi J. Pigs immunized with Chinese highly pathogenic PRRS virus modified live vaccine are protected from challenge with North American PRRSV strain NADC-20. Vaccine 2015; 33:3518-25. [PMID: 26049004 DOI: 10.1016/j.vaccine.2015.05.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/13/2015] [Accepted: 05/22/2015] [Indexed: 11/19/2022]
Abstract
Modified live virus (MLV) vaccines developed to protect against PRRSV circulating in North America (NA) offer limited protection to highly pathogenic (HP) PRRSV strains that are emerging in Asia. MLV vaccines specific to HP-PRRSV strains commercially available in China provide protection to HP-PRRSV; however, the efficacy of these HP-PRRSV vaccines to current circulating NA PRRS viruses has not been reported. The aim of this study is to investigate whether pigs vaccinated with attenuated Chinese HP-PRRSV vaccine (JXA1-R) are protected from infection by NA PRRSV strain NADC-20. We found that pigs vaccinated with JXA1-R were protected from challenges with HV-PRRSV or NADC-20 as shown by fewer days of clinical fever, reduced lung pathology scores, and lower PRRS virus load in the blood. PRRSV-specific antibodies, as measured by IDEXX ELISA, appeared one week after vaccination and virus neutralizing antibodies were detected four weeks post vaccination. Pigs vaccinated with JXA1-R developed broadly neutralizing antibodies with high titers to NADC-20, JXA1-R, and HV-PRRSV. In addition, we also found that IFN-α and IFN-β occurred at higher levels in the lungs of pigs vaccinated with JXA1-R. Taken together, our studies provide the first evidence that JXA1-R can confer protection in pigs against the heterologous NA PRRSV strain NADC-20.
Collapse
Affiliation(s)
- Amy Galliher-Beckley
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Xiangdong Li
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - John T Bates
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Rachel Madera
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Andrew Waters
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Jerome Nietfeld
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Dongsheng He
- State Key Laboratory of Biotechnology and Bio-products Development for Animal Epidemic Prevention, South China Agricultural University, Guangzhou, China
| | - Wenhai Feng
- State Key Laboratory of Agro-biotechnology, China Agriculture University, Beijing, China
| | - Ruiai Chen
- State Key Laboratory of Biotechnology and Bio-products Development for Animal Epidemic Prevention, South China Agricultural University, Guangzhou, China
| | - Jishu Shi
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
8
|
Comparison of host immune responses to homologous and heterologous type II porcine reproductive and respiratory syndrome virus (PRRSV) challenge in vaccinated and unvaccinated pigs. BIOMED RESEARCH INTERNATIONAL 2014; 2014:416727. [PMID: 24719862 PMCID: PMC3955659 DOI: 10.1155/2014/416727] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/05/2014] [Accepted: 01/08/2014] [Indexed: 01/08/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a high-consequence animal disease with current vaccines providing limited protection from infection due to the high degree of genetic variation of field PRRS virus. Therefore, understanding host immune responses elicited by different PRRSV strains will facilitate the development of more effective vaccines. Using IngelVac modified live PRRSV vaccine (MLV), its parental strain VR-2332, and the heterologous KS-06-72109 strain (a Kansas isolate of PRRSV), we compared immune responses induced by vaccination and/or PRRSV infection. Our results showed that MLV can provide complete protection from homologous virus (VR-2332) and partial protection from heterologous (KS-06) challenge. The protection was associated with the levels of PRRSV neutralizing antibodies at the time of challenge, with vaccinated pigs having higher titers to VR-2332 compared to KS-06 strain. Challenge strain did not alter the cytokine expression profiles in the serum of vaccinated pigs or subpopulations of T cells. However, higher frequencies of IFN-γ-secreting PBMCs were generated from pigs challenged with heterologous PRRSV in a recall response when PBMCs were re-stimulated with PRRSV. Thus, this study indicates that serum neutralizing antibody titers are associated with PRRSV vaccination-induced protection against homologous and heterologous challenge.
Collapse
|
9
|
Li X, Galliher-Beckley A, Huang H, Sun X, Shi J. Peptide nanofiber hydrogel adjuvanted live virus vaccine enhances cross-protective immunity to porcine reproductive and respiratory syndrome virus. Vaccine 2013; 31:4508-15. [PMID: 23933333 PMCID: PMC3806094 DOI: 10.1016/j.vaccine.2013.07.080] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is prevalent in swine farms worldwide and is a major source of economic loss and animal suffering. Rapid genetic variation of PRRSV makes it difficult for current vaccines to confer protection against newly emerging strains. We recently demonstrated that a novel peptide nanofiber hydrogel (H9e) could act as a potent adjuvant for killed H1N1 vaccines. Therefore, the objective of this study was to evaluate H9e as an adjuvant for PRRSV modified live virus (MLV) vaccines. Pigs were vaccinated with Ingelvac PRRSV MLV with or without H9e adjuvant before being challenged with the VR-2332 (parental vaccine strain) or MN184A (genetically diverse strain) PRRSV. Pigs vaccinated with MLV+H9e had higher levels of circulating vaccine virus. More importantly, pigs vaccinated with MLV+H9e had improved protection against challenge by both PRRSV strains, as demonstrated by reduced challenge-induced viremia compared with pigs vaccinated with MLV alone. Pigs vaccinated with MLV+H9e had lower frequency of T-regulatory cells and IL-10 production but higher frequency of Th/memory cells and IFN-γ secretion than that in pigs vaccinated with MLV alone. Taken together, our studies suggest that the peptide nanofiber hydrogel H9e, when combined with the PRRSV MLV vaccine, can enhance vaccine efficacy against two different PRRSV strains by modulating both host humoral and cellular immune responses.
Collapse
Affiliation(s)
- Xiangdong Li
- Department of Anatomy and Physiology, College of Agriculture, Kansas State University, Manhattan, KS, United States
| | - Amy Galliher-Beckley
- Department of Anatomy and Physiology, College of Agriculture, Kansas State University, Manhattan, KS, United States
| | - Hongzhou Huang
- Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS, United States
| | - Xiuzhi Sun
- Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS, United States
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Agriculture, Kansas State University, Manhattan, KS, United States
| |
Collapse
|