1
|
Barliana MI, Kusuma ASW, Insani WN, Alfian SD, Diantini A, Mutakin M, Rostinawati T, Herlambang H, Puspitasari IM, Suwantika AA, Abdulah R. Genetic variation of ABCB1 (rs1128503, rs1045642) and CYP2E1 rs3813867 with the duration of tuberculosis therapy: a pilot study among tuberculosis patients in Indonesia. BMC Res Notes 2021; 14:295. [PMID: 34332626 PMCID: PMC8325820 DOI: 10.1186/s13104-021-05711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022] Open
Abstract
Objective The risk of contracting tuberculosis (TB) and the efficacy of TB therapy are affected by several factors, including genetic variation among populations. In the Indonesian population, data on the genes involved in drug transport and metabolism of TB therapy are limited. The aim of this study was to identify the genetic profile of the ABCB1 gene (rs1128503 and rs1045642) and CYP2E1 gene (rs3813867) in Indonesians with TB. This study was a cross-sectional study of 50 TB outpatients in Jambi city, Indonesia. Sociodemographic characteristics were obtained from medical records. Whole blood was collected, and genomic DNA was isolated. Single nucleotide polymorphisms were determined using polymerase chain reaction-restriction fragment length polymorphism with HaeIII, MboI, and PstI for rs1128503, rs1045642 (ABCB1), and rs3813867 (CYP2E1), respectively. Result The frequency of alleles of each gene was analyzed by Hardy–Weinberg equilibrium. The genetic profiles of ABCB1 rs1128503 and rs1045642 were varied (CC, CT, TT), while CYP2E1 rs3813867 was present in CC (wild type). The genetic variations of ABCB1 and CYP2E1 may have no significant correlation with the duration of TB therapy. Nevertheless, this study may provide as preliminary results for the genetic profiles of ABCB1 (rs1128503, rs1045642) and CYP2E1 (rs3813867) in the Indonesia population. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05711-8.
Collapse
Affiliation(s)
- Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, Bandung, 45363, Indonesia. .,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.
| | - Arif Satria Wira Kusuma
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, Bandung, 45363, Indonesia.,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia
| | - Widya Norma Insani
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Sofa Dewi Alfian
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Ajeng Diantini
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Mutakin Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Tina Rostinawati
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, Bandung, 45363, Indonesia
| | | | - Irma Melyani Puspitasari
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Auliya Abdurrohim Suwantika
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Rizky Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
3
|
Dagenais R, Wilby KJ, Elewa H, Ensom MHH. Impact of Genetic Polymorphisms on Phenytoin Pharmacokinetics and Clinical Outcomes in the Middle East and North Africa Region. Drugs R D 2017; 17:341-361. [PMID: 28748348 PMCID: PMC5629135 DOI: 10.1007/s40268-017-0195-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Genetic polymorphisms are known to influence outcomes with phenytoin yet effects in the Middle East and North Africa region are poorly understood. OBJECTIVES The objective of this systematic review was to evaluate the impact of genetic polymorphisms on phenytoin pharmacokinetics and clinical outcomes in populations originating from the Middle East and North Africa region, and to characterize genotypic and allelic frequencies within the region for genetic polymorphisms assessed. METHODS MEDLINE (1946-3 May, 2017), EMBASE (1974-3 May, 2017), Pharmacogenomics Knowledge Base, and Public Health Genomics Knowledge Base online databases were searched. Studies were included if genotyping and analyses of phenytoin pharmacokinetics were performed in patients of the Middle East and North Africa region. Study quality was assessed using a National Institutes of Health assessment tool. A secondary search identified studies reporting genotypic and allelic frequencies of assessed genetic polymorphisms within the Middle East and North Africa region. RESULTS Five studies met the inclusion criteria. CYP2C9, CYP2C19, and multidrug resistance protein 1 C3435T variants were evaluated. While CYP2C9*2 and *3 variants significantly reduced phenytoin metabolism, the impacts of CYP2C19*2 and *3 variants were unclear. The multidrug resistance protein 1 CC genotype was associated with drug-resistant epilepsy, but reported impacts on phenytoin pharmacokinetics were conflicting. Appreciable variability in minor allele frequencies existed both between and within countries of the Middle East and North Africa region. CONCLUSIONS CYP2C9 decrease-of-function alleles altered phenytoin pharmacokinetics in patients originating from the Middle East and North Africa region. The impacts of CYP2C19 and multidrug resistance protein 1 C3435T variants on phenytoin pharmacokinetic and clinical outcomes are unclear and require further investigation. Future research should focus on the clinical outcomes associated with phenytoin therapy. PROSPERO 2017: CRD42017057850.
Collapse
Affiliation(s)
- Renée Dagenais
- Faculty of Pharmaceutical Sciences, Pharmaceutical Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Kyle John Wilby
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar.
| | - Hazem Elewa
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar
| | - Mary H H Ensom
- Faculty of Pharmaceutical Sciences, Pharmaceutical Sciences Building, University of British Columbia, Vancouver, BC, Canada
- Department of Pharmacy, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Peng R, Zhang H, Zhang Y, Wei DY. Impacts of ABCB1 (G1199A) polymorphism on resistance, uptake, and efflux to steroid drugs. Xenobiotica 2016; 46:948-52. [PMID: 26822676 DOI: 10.3109/00498254.2016.1138249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. P-glycoprotein (P-gp) substrates, including steroid drugs, involve in the inter-individual differences in resistant phenotype. This study was performed to evaluate whether G1199A polymorphism in ABCB1 gene can alter the sensitivity, accumulation, and transepithelial efflux to steroids in LLC-PK1 cells. 2. The stable recombinant LLC-PK1 cell lines transfected with ABCB1 1199G and ABCB1 1199A were used to assess the sensitivity, accumulation, and transepithelial permeability to steroids. 3. The cells transfected with 1199A allele displayed stronger resistance to aldosterone, dexamethasone, and cortisol (2.5-, 2.0-, and 1.6-fold, respectively) than cells overexpressing 1199G allele, while the two types of recombinant cells showed a similar resistance to corticosterone. The accumulation of aldosterone, dexamethasone, and cortisol in recombinant 1199A cells were significantly decreased when compared to 1199G cells (2.9-, 4.4-, and 3.9-fold, respectively). The net efflux ratios of P-gp-mediated aldosterone, dexamethasone, and cortisol in cells expressing 1199A allele were apparently greater than cells transfected with 1199G allele (3.3-, 3.5-, and 4.0-fold, respectively). 4. The impacts of ABCB1 (G1199A) single nucleotide polymorphism on the efflux of P-gp substrates presented as drug-specific. Overall, the transport ability of P-gp-dependent steroid drugs in recombinant model overexpressing variant 1199A allele is stronger in comparison to cells overexpressing wild-type 1199G allele. Therefore, the ABCB1 (G1199A) polymorphism may affect effective steroids concentration in target cells by regulating the drug transport and distribution.
Collapse
Affiliation(s)
- Rui Peng
- a Department of Pharmacy , Renmin Hospital of Wuhan University , Wuhan , China
| | - Hong Zhang
- a Department of Pharmacy , Renmin Hospital of Wuhan University , Wuhan , China
| | - Ying Zhang
- a Department of Pharmacy , Renmin Hospital of Wuhan University , Wuhan , China
| | - Dan-Yun Wei
- a Department of Pharmacy , Renmin Hospital of Wuhan University , Wuhan , China
| |
Collapse
|
5
|
Alzoubi KH, Khabour OF, Al-Azzam SI, Mayyas F, Mhaidat NM. The role of Multidrug Resistance-1 (MDR1) variants in response to atorvastatin among Jordanians. Cytotechnology 2014; 67:267-74. [PMID: 24414406 DOI: 10.1007/s10616-013-9682-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/20/2013] [Indexed: 11/25/2022] Open
Abstract
The MDR1 gene encodes for P-glycoprotein (P-gp), which is an efflux transporter at the cell membrane. The P-gp has wide substrate specificity for multiple medications including the lipid lowering drug, atorvastatin. In this study, we investigated the possible association between three common MDR1 gene polymorphisms (G2677T, C3435T, and C1236T), and the lipid lowering effect of atorvastatin among Jordanians. Lipid and lipoproteins were measured in blood samples collected from patients (n = 201) at baseline and during atorvastatin treatment. MDR1 polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism. Both the TT genotype of G2677T and the TT genotype of the C3435T polymorphisms were associated with lower levels of low-density lipoproteins after atorvastatin treatment. However, the effects of atorvastatin on the levels of total cholesterol, triglycerides, and high-density lipoprotein, were not correlated with any of the genotypes in both polymorphisms. Finally, the C1236T polymorphism was not associated with the lipid lowering effect of atorvastatin. In conclusion, the MDR1 gene polymorphisms G2677T, and C3435T, but not C1236T were associated with the lipid lowering effect of atorvastatin among Jordanians.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan,
| | | | | | | | | |
Collapse
|