1
|
Herger N, Bermudez-Lekerika P, Farshad M, Albers CE, Distler O, Gantenbein B, Dudli S. Should Degenerated Intervertebral Discs of Patients with Modic Type 1 Changes Be Treated with Mesenchymal Stem Cells? Int J Mol Sci 2022; 23:ijms23052721. [PMID: 35269863 PMCID: PMC8910866 DOI: 10.3390/ijms23052721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Low back pain (LBP) has been among the leading causes of disability for the past 30 years. This highlights the need for improvement in LBP management. Many clinical trials focus on developing treatments against degenerative disc disease (DDD). The multifactorial etiology of DDD and associated risk factors lead to a heterogeneous patient population. It comes as no surprise that the outcomes of clinical trials on intradiscal mesenchymal stem cell (MSC) injections for patients with DDD are inconsistent. Intradiscal MSC injections have demonstrated substantial pain relief and significant disability-related improvements, yet they have failed to regenerate the intervertebral disc (IVD). Increasing evidence suggests that the positive outcomes in clinical trials might be attributed to the immunomodulatory potential of MSCs rather than to their regenerative properties. Therefore, patient stratification for inflammatory DDD phenotypes may (i) better serve the mechanisms of action of MSCs and (ii) increase the treatment effect. Modic type 1 changes—pathologic inflammatory, fibrotic changes in the vertebral bone marrow—are frequently observed adjacent to degenerated IVDs in chronic LBP patients and represent a clinically distinct subpopulation of patients with DDD. This review discusses whether degenerated IVDs of patients with Modic type 1 changes should be treated with an intradiscal MSC injection.
Collapse
Affiliation(s)
- Nick Herger
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, CH-8008 Zurich, Switzerland; (N.H.); (O.D.)
| | - Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (P.B.-L.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, CH-3010 Bern, Switzerland;
| | - Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, CH-8008 Zurich, Switzerland;
| | - Christoph E. Albers
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, CH-3010 Bern, Switzerland;
| | - Oliver Distler
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, CH-8008 Zurich, Switzerland; (N.H.); (O.D.)
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, CH-3008 Bern, Switzerland; (P.B.-L.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, CH-3010 Bern, Switzerland;
| | - Stefan Dudli
- Center of Experimental Rheumatology, University Hospital Zurich and Balgrist University Hospital, University of Zurich, CH-8008 Zurich, Switzerland; (N.H.); (O.D.)
- Correspondence: ; Tel.: +41-4451-07511
| |
Collapse
|
2
|
Hollenberg AM, Maqsoodi N, Phan A, Huber A, Jubril A, Baldwin AL, Yokogawa N, Eliseev RA, Mesfin A. Bone morphogenic protein-2 signaling in human disc degeneration and correlation to the Pfirrmann MRI grading system. Spine J 2021; 21:1205-1216. [PMID: 33677096 PMCID: PMC8356724 DOI: 10.1016/j.spinee.2021.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Back and neck pain secondary to disc degeneration is a major public health burden. There is a need for therapeutic treatments to restore intervertebral disc (IVD) composition and function. PURPOSE To quantify ALK3, BMP-2, pSMAD1/5/8 and MMP-13 expression in IVD specimens collected from patients undergoing surgery for disc degeneration, to correlate ALK3, BMP-2, pSMAD1/5/8 and MMP-13 expression in IVD specimens to the 5-level Pfirrmann MRI grading system, and to compare ALK3, BMP-2, pSMAD1/5/8 and MMP-13 expression between cervical and lumbar degenerative disc specimens. STUDY DESIGN An immunohistochemical study assessing ALK3, BMP-2, pSMAD1/5/8, and MMP-13 expression levels in human control and degenerative IVD specimens. METHODS Human IVD specimens were collected from surgical patients who underwent discectomy and interbody fusion at our institution between 1/2015 and 8/2017. Each patient underwent MRI prior to surgery. The degree of disc degeneration was measured according to the 5-level Pfirrmann MRI grading system. Patients were categorized into either the 1) control group (Pfirrmann grades I-II) or 2) degenerative group (Pfirrmann grades III-V). Histology slides of the collected IVD specimens were prepared and immunohistochemical staining was performed to assess ALK3, BMP-2, pSMAD1/5/8, and MMP-13 expression levels in the control and degenerative specimens. Expression levels were also correlated to the Pfirrmann criteria. Lastly, the degenerative specimens were stratified according to their vertebral level and expression levels between the degenerative lumbar and cervical discs were compared. RESULTS Fifty-two patients were enrolled; however, 2 control and 2 degenerative patients were excluded due to incomplete data sets. Of the remaining 48 patients, there were 12 control and 36 degenerative specimens. Degenerative specimens had increased expression levels of BMP-2 (p=.0006) and pSMAD1/5/8 (p<.0001). Pfirrmann grade 3 (p=.0365) and grade 4 (p=.0008) discs had significantly higher BMP-2 expression as compared to grade 2 discs. Pfirrmann grade 4 discs had higher pSMAD1/5/8 expression as compared to grade 2 discs (p<.0001). There were no differences in ALK3 or MMP-13 expression between the control and degenerative discs (p>.05). Stratifying the degenerative specimens according to their vertebral level showed no significant differences in expression levels between the lumbar and cervical discs (p>.05). CONCLUSIONS BMP-2 and pSMAD1/5/8 signaling activity was significantly upregulated in the human degenerative specimens, while ALK3 and MMP-13 expression were not significantly changed. The expression levels of BMP-2 and pSMAD1/5/8 correlate positively with the degree of disc degeneration measured according to the Pfirrmann MRI grading system. CLINICAL SIGNIFICANCE BMP-SMAD signaling represents a promising therapeutic target to restore IVD composition and function in the setting of disc degeneration.
Collapse
Affiliation(s)
- Alex M Hollenberg
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Noorullah Maqsoodi
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Amy Phan
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aric Huber
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ayodeji Jubril
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Avionna L Baldwin
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Noriaki Yokogawa
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Roman A Eliseev
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Addisu Mesfin
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
3
|
Frapin L, Clouet J, Chédeville C, Moraru C, Samarut E, Henry N, André M, Bord E, Halgand B, Lesoeur J, Fusellier M, Guicheux J, Le Visage C. Controlled release of biological factors for endogenous progenitor cell migration and intervertebral disc extracellular matrix remodelling. Biomaterials 2020; 253:120107. [PMID: 32450408 DOI: 10.1016/j.biomaterials.2020.120107] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
The recent description of resident stem/progenitor cells in degenerated intervertebral discs (IVDs) supports the notion that their regenerative capacities could be harnessed to stimulate endogenous repair of the nucleus pulposus (NP). In this study, we developed a delivery system based on pullulan microbeads (PMBs) for sequential release of the chemokine CCL-5 to recruit these disc stem/progenitor cells to the NP tissue, followed by the release of the growth factors TGF-β1 and GDF-5 to induce the synthesis of a collagen type II- and aggrecan-rich extracellular matrix (ECM). Bioactivity of released CCL5 on human adipose-derived stem cells (hASCs), selected to mimic disc stem/progenitors, was demonstrated using a Transwell® chemotaxis assay. The regenerative effects of loaded PMBs were investigated in ex vivo spontaneously degenerated ovine IVDs. Fluorescent hASCs were seeded on the top cartilaginous endplates (CEPs); the degenerated NPs were injected with PMBs loaded with CCL5, TGF-β1, and GDF-5; and the IVDs were then cultured for 3, 7, and 28 days to allow for cell migration and disc regeneration. The PMBs exhibited sustained release of biological factors for 21 days. Ex vivo migration of seeded hASCs from the CEP toward the NP was demonstrated, with the cells migrating a significantly greater distance when loaded PMBs were injected (5.8 ± 1.3 mm vs. 3.5 ± 1.8 mm with no injection of PMBs). In ovine IVDs, the overall NP cellularity, the collagen type II and the aggrecan staining intensities, and the Tie2+ progenitor cell density in the NP were increased at day 28 compared to the control groups. Considered together, PMBs loaded with CCL5/TGF-β1/GDF-5 constitute an innovative and promising strategy for controlled release of growth factors to promote cell recruitment and extracellular matrix remodelling.
Collapse
Affiliation(s)
- Leslie Frapin
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Johann Clouet
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes, F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes, F-44035, France
| | - Claire Chédeville
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Constantin Moraru
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Edouard Samarut
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Nina Henry
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France
| | - Manon André
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; SC3M -"Electron Microscopy, Microcharacterization, and Functional Morphohistology Imaging" Core Facility, Structure Fédérative de Recherche François Bonamy, INSERM - UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, Nantes, F-04402, France
| | - Eric Bord
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, Service de Neurotraumatologie, PHU4 OTONN, Nantes, F-44093, France
| | - Boris Halgand
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France
| | - Julie Lesoeur
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; SC3M -"Electron Microscopy, Microcharacterization, and Functional Morphohistology Imaging" Core Facility, Structure Fédérative de Recherche François Bonamy, INSERM - UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, Nantes, F-04402, France
| | - Marion Fusellier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; Department of Diagnostic Imaging, CRIP, National Veterinary School (ONIRIS), Nantes, F-44307, France
| | - Jérôme Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France; SC3M -"Electron Microscopy, Microcharacterization, and Functional Morphohistology Imaging" Core Facility, Structure Fédérative de Recherche François Bonamy, INSERM - UMS016, CNRS 3556, CHU Nantes, Université de Nantes, Nantes, Nantes, F-04402, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France.
| | - Catherine Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, F-44042, France; Université de Nantes, UFR Odontologie, Nantes, F-44042, France.
| |
Collapse
|
6
|
Schubert AK, Smink JJ, Arp M, Ringe J, Hegewald AA, Sittinger M. Quality Assessment of Surgical Disc Samples Discriminates Human Annulus Fibrosus and Nucleus Pulposus on Tissue and Molecular Level. Int J Mol Sci 2018; 19:ijms19061761. [PMID: 29899321 PMCID: PMC6032144 DOI: 10.3390/ijms19061761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023] Open
Abstract
A discrimination of the highly specialised annulus fibrosus (AF) and nucleus pulposus (NP) cells in the mature human intervertebral disc (IVD) is thus far still not possible in a reliable way. The aim of this study was to identify molecular markers that distinguish AF and NP cells in human disc tissue using microarray analysis as a screening tool. AF and NP samples were obtained from 28 cervical discs. First, all samples underwent quality sorting using two novel scoring systems for small-sized disc tissue samples including macroscopic, haptic and histological evaluation. Subsequently, samples with clear disc characteristics of either AF or NP that were free from impurities of foreign tissue (IVD score) and with low signs of disc degeneration on cellular level (DD score) were selected for GeneChip analysis (HGU1332P). The 11 AF and 9 NP samples showed distinctly different genome-wide transcriptomes. The majority of differentially expressed genes (DEGs) could be specifically assigned to the AF, whereas no DEG was exclusively expressed in the NP. Nevertheless, we identified 11 novel marker genes that clearly distinguished AF and NP, as confirmed by quantitative gene expression analysis. The novel established scoring systems and molecular markers showed the identity of AF and NP in disc starting material and are thus of great importance in the quality assurance of cell-based therapeutics in regenerative treatment of disc degeneration.
Collapse
Affiliation(s)
- Ann-Kathrin Schubert
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
- CO.DON AG, 14513 Teltow, Germany.
| | | | - Mirko Arp
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Jochen Ringe
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
| | - Aldemar A Hegewald
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
- Department of Neurosurgery and Spine Surgery, Helios Baltic Sea Hospital Damp, 24351 Damp, Germany.
| | - Michael Sittinger
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
| |
Collapse
|
7
|
Colombier P, Clouet J, Boyer C, Ruel M, Bonin G, Lesoeur J, Moreau A, Fellah BH, Weiss P, Lescaudron L, Camus A, Guicheux J. TGF-β1 and GDF5 Act Synergistically to Drive the Differentiation of Human Adipose Stromal Cells towardNucleus Pulposus-like Cells. Stem Cells 2015; 34:653-67. [DOI: 10.1002/stem.2249] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Pauline Colombier
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
| | - Johann Clouet
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
- Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques; Nantes France
- CHU Nantes, Pharmacie Centrale, PHU 11; Nantes France
| | - Cécile Boyer
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
| | - Maëva Ruel
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
| | - Gaëlle Bonin
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
| | - Julie Lesoeur
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
| | - Anne Moreau
- Université de Nantes, UFR Médecine; Nantes France
- CHU Nantes, Service d'Anatomopathologie; Nantes France
| | - Borhane-Hakim Fellah
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
- CRIP, Centre de Recherche et d'Investigations Précliniques, ONIRIS; Nantes France
| | - Pierre Weiss
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
- CHU Nantes, PHU 4 OTONN; Nantes France
| | - Laurent Lescaudron
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
- Université de Nantes, UFR Sciences et Techniques; Nantes France
| | - Anne Camus
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
| | - Jérôme Guicheux
- INSERM UMRS 791, Laboratoire d'Ingénierie Osteo Articulaire et Dentaire (LIOAD); Nantes France
- Université de Nantes, UFR Odontologie; Nantes France
- CHU Nantes, PHU 4 OTONN; Nantes France
| |
Collapse
|