1
|
Zhou L, Matsumoto T, Tan HW, Meinhardt LW, Mischke S, Wang B, Zhang D. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm. HORTICULTURE RESEARCH 2015; 2:15056. [PMID: 26640697 PMCID: PMC4660223 DOI: 10.1038/hortres.2015.56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/24/2015] [Accepted: 10/25/2015] [Indexed: 05/28/2023]
Abstract
Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops.
Collapse
Affiliation(s)
- Lin Zhou
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Tracie Matsumoto
- Daniel K. Inouye Pacific Basin Agricultural Research Center, USDA-ARS, Hilo, HI 96720, USA
| | - Hua-Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Lyndel W Meinhardt
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Sue Mischke
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Boyi Wang
- Yunnan Forestry Technological College, Kunming 650224, Yunnan, China
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| |
Collapse
|
2
|
Sunil M, Hariharan AK, Nayak S, Gupta S, Nambisan SR, Gupta RP, Panda B, Choudhary B, Srinivasan S. The draft genome and transcriptome of Amaranthus hypochondriacus: a C4 dicot producing high-lysine edible pseudo-cereal. DNA Res 2014; 21:585-602. [PMID: 25071079 PMCID: PMC4263292 DOI: 10.1093/dnares/dsu021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Grain amaranths, edible C4 dicots, produce pseudo-cereals high in lysine. Lysine being one of the most limiting essential amino acids in cereals and C4 photosynthesis being one of the most sought-after phenotypes in protein-rich legume crops, the genome of one of the grain amaranths is likely to play a critical role in crop research. We have sequenced the genome and transcriptome of Amaranthus hypochondriacus, a diploid (2n = 32) belonging to the order Caryophyllales with an estimated genome size of 466 Mb. Of the 411 linkage single-nucleotide polymorphisms (SNPs) reported for grain amaranths, 355 SNPs (86%) are represented in the scaffolds and 74% of the 8.6 billion bases of the sequenced transcriptome map to the genomic scaffolds. The genome of A. hypochondriacus, codes for at least 24,829 proteins, shares the paleohexaploidy event with species under the superorders Rosids and Asterids, harbours 1 SNP in 1,000 bases, and contains 13.76% of repeat elements. Annotation of all the genes in the lysine biosynthetic pathway using comparative genomics and expression analysis offers insights into the high-lysine phenotype. As the first grain species under Caryophyllales and the first C4 dicot genome reported, the work presented here will be beneficial in improving crops and in expanding our understanding of angiosperm evolution.
Collapse
Affiliation(s)
- Meeta Sunil
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Arun K Hariharan
- GANIT Labs: Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Soumya Nayak
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Saurabh Gupta
- GANIT Labs: Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Suran R Nambisan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Ravi P Gupta
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Binay Panda
- GANIT Labs: Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| | - Subhashini Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, Karnataka 560100, India
| |
Collapse
|
3
|
Longhi S, Giongo L, Buti M, Surbanovski N, Viola R, Velasco R, Ward JA, Sargent DJ. Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives. HORTICULTURE RESEARCH 2014; 1:1. [PMID: 26504527 PMCID: PMC4591673 DOI: 10.1038/hortres.2014.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/24/2013] [Indexed: 05/04/2023]
Abstract
The Rosoideae is a subfamily of the Rosaceae that contains a number of species of economic importance, including the soft fruit species strawberry (Fragaria ×ananassa), red (Rubus idaeus) and black (Rubus occidentalis) raspberries, blackberries (Rubus spp.) and one of the most economically important cut flower genera, the roses (Rosa spp.). Molecular genetics and genomics resources for the Rosoideae have developed rapidly over the past two decades, beginning with the development and application of a number of molecular marker types including restriction fragment length polymorphisms, amplified fragment length polymorphisms and microsatellites, and culminating in the recent publication of the genome sequence of the woodland strawberry, Fragaria vesca, and the development of high throughput single nucleotide polymorphism (SNP)-genotyping resources for Fragaria, Rosa and Rubus. These tools have been used to identify genes and other functional elements that control traits of economic importance, to study the evolution of plant genome structure within the subfamily, and are beginning to facilitate genomic-assisted breeding through the development and deployment of markers linked to traits such as aspects of fruit quality, disease resistance and the timing of flowering. In this review, we report on the developments that have been made over the last 20 years in the field of molecular genetics and structural genomics within the Rosoideae, comment on how the knowledge gained will improve the efficiency of cultivar development and discuss how these advances will enhance our understanding of the biological processes determining agronomically important traits in all Rosoideae species.
Collapse
Affiliation(s)
- Sara Longhi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Lara Giongo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Matteo Buti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Nada Surbanovski
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Roberto Viola
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Riccardo Velasco
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Daniel J Sargent
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|