1
|
Li D, Zhang L, Wang Y, Chen X, Li F, Yang L, Cui J, Li R, Cao B, An X, Song Y. FecB mutation and litter size are associated with a 90-base pair deletion in BMPR1B in East Friesian and Hu crossbred sheep. Anim Biotechnol 2023; 34:1314-1323. [PMID: 34985398 DOI: 10.1080/10495398.2021.2020805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Litter size is a critical economic trait in livestock, but only a few studies have focused on associated indel mutations in BMPR1B, a key regulator of ovulation and litter size in sheep. We evaluated the effects of BMPR1B mutations on the reproductive performance of sheep. We used Hu, East Friesian, and East Friesian/Hu crossbred sheep as experimental subjects and identified a novel 90 bp deletion in BMPR1B, which coincides with the c.746A > G (FecB mutation) genotype. The correlation between the two loci and litter size was then evaluated. We identified three genotypes for the Del-90bp locus, namely, II, ID, and DD, and three genotypes for the c.746A > G locus, namely ++, B+, and BB. Both Del-90bp and c.746A > G significantly affected the litter size of Hu and East Friesian/Hu crossbred sheep. Linkage disequilibrium analysis revealed a strong linkage disequilibrium between these loci in Hu sheep and the F1 population (r2 > 0.33), which suggests that detecting this 90 bp deletion might be a simple method to identify the likely carriers of c.746A > G. However, the function of this 90-bp deletion still needs further exploration. We provide genetic data that can be used as a reference for the breeding of improved prolific traits in sheep.
Collapse
Affiliation(s)
- Danni Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuchen Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xingzhuo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fu Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lichun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ran Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
miR-27a-3p targets NR5A2 to regulate CYP19A1 expression and 17-β estradiol synthesis in ovine granulosa cells. Anim Reprod Sci 2023; 248:107160. [PMID: 36481589 DOI: 10.1016/j.anireprosci.2022.107160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Although 17-β estradiol (E2) synthesis is important in regulating female fertility, we know little regarding the molecular mechanism of miRNA-regulated ovine E2 synthesis. Here, our experiments with granulosa cells (GCs) from Hu sheep revealed miR-27a-3p involvement in E2 synthesis and its association with ovine litter size. First, we showed that miR-27a-3p of sheep and other mammals share a high nucleotide identity. Next, gain- and loss-of-function assays indicated that miR-27a-3p inhibits CYP19A1 expression and E2 synthesis in GCs. Moreover, we demonstrated that NR5A2 is a direct target of miR-27a-3p. Ovine miR-27a-3p suppresses E2 synthesis via the NR5A2 and CYP19A1 axes. We also identified four single nucleotide polymorphisms in the ovine miR-27a gene, and g.-13 G>A and g 0.24 T > G were significantly associated with the first and the second parity litter size, respectively (P < 0.05). In summary, our findings reveal that miR-27a-3p is a novel regulator of E2 synthesis and may predict litter size of Hu sheep, providing insight into mechanisms underlying granulosa cell function and female fertility.
Collapse
|
3
|
Liu Y, Guo S, He X, Jiang Y, Hong Q, Lan R, Chu M. Effect of Upregulation of Transcription Factor TFDP1 Binding Promoter Activity Due to RBP4 g.36491960G>C Mutation on the Proliferation of Goat Granulosa Cells. Cells 2022; 11:cells11142148. [PMID: 35883591 PMCID: PMC9321149 DOI: 10.3390/cells11142148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Retinol-binding protein 4 (RBP4), a member of the lipocalin family, is a specific carrier of retinol (vitamin A) in the blood. Numerous studies have shown that RBP4 plays an important role in mammalian embryonic development and that mutations in RBP4 can be used for the marker-assisted selection of animal reproductive traits. However, there are few studies on the regulation of reproduction and high-prolificacy traits by RBP4 in goats. In this study, the 5′ flanking sequence of RBP4 was amplified, and a G>C polymorphism in the promoter region -211 bp (g.36491960) was detected. An association analysis revealed that the respective first, second and third kidding number and mean kidding number of nanny goats with CC and GC genotypes (2.167 ± 0.085, 2.341 ± 0.104, 2.529 ± 0.107 and 2.189 ± 0.070 for CC and 2.052 ± 0.047, 2.206 ± 0.057, 2.341 ± 0.056 and 2.160 ± 0.039 for GC) were significantly higher (p < 0.05) than those with the GG genotype (1.893 ± 0.051, 2.027 ± 0.064, 2.107 ± 0.061 and 1.74 ± 0.05). The luciferase assay showed that luciferase activity was increased in C allele individuals compared with that in G allele individuals. A competitive electrophoretic mobility shift assay (EMSA) showed that individuals with the CC genotype had a stronger promoter region binding capacity than those with the GG genotype. In addition, transcription factor prediction software showed that the RBP4 g.36491960G>C mutation added a novel binding site for transcription factor DP-1 (TFDP1). RT−qPCR results showed that the expression of TFDP1 was significantly higher in the high-prolificacy group than in the low-prolificacy group, and the expression of RBP4 was higher in both the CC and GC genotypes than that in the GG genotype. TFDP1 overexpression significantly increased the expression of RBP4 mRNA (p < 0.05) and the expression of the cell proliferation factors cyclin-D1, cyclin-D2 and CDK4 (p < 0.05). The opposite trend was observed after interference with TFDP1. Both the EdU and CCK-8 results showed that TFDP1 expression could regulate the proliferation of goat ovarian granulosa cells. In summary, our results showed that RBP4 g.36491960G>C was significantly associated with fecundity traits in goats. The g.36491960G>C mutation enhanced the transcriptional activity of RBP4 and increased the expression of RBP4, thus improving the fertility of Yunshang black goats.
Collapse
Affiliation(s)
- Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (S.G.); (X.H.)
| | - Siwu Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (S.G.); (X.H.)
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (S.G.); (X.H.)
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.J.); (Q.H.); (R.L.)
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.J.); (Q.H.); (R.L.)
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.J.); (Q.H.); (R.L.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (S.G.); (X.H.)
- Correspondence: ; Tel.: +86-10-62819850; Fax: +86-10-62895351
| |
Collapse
|
4
|
Chen Q, Cai J, Zhang W, Xiao L, Liu G, Li H, Wu F, Song Q, Li K, Zhang J. Expression analysis of the NR5A2 gene and associations between its polymorphisms and reproductive traits in Jiaxing Black sows. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.2020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qiangqiang Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jianfeng Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Wei Zhang
- Institute of Translation Medicine, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Lixia Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Guoliang Liu
- Zhejiang Qinglian Food Company Limited, Jiaxing, People’s Republic of China
| | - Haihong Li
- Zhejiang Qinglian Food Company Limited, Jiaxing, People’s Republic of China
| | - Fen Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qianqian Song
- School of Life Sciences, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Kui Li
- Zhejiang General Station of Animal Husbandry Technology Promotion and Breeding Livestock Monitoring, People’s Republic of China
| | - Jinzhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
5
|
Li Y, Jin W, Wang Y, Zhang J, Meng C, Wang H, Qian Y, Li Q, Cao S. Three Complete Linkage SNPs ofGDF9Gene Affect the Litter Size Probably Mediated by OCT1 in Hu Sheep. DNA Cell Biol 2020; 39:563-571. [DOI: 10.1089/dna.2019.4984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Yinxia Li
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Wenwen Jin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Wang
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Jun Zhang
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Chunhua Meng
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Huili Wang
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Yong Qian
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shaoxian Cao
- Jiangsu Academy of Agricultural Sciences, Institute of Animal Science, Nanjing, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
6
|
Li Y, Zhang J, Qian Y, Meng C, Wang H, Zhong J, Cao S. A T > G Mutation in the NR5A2 Gene Is Associated With Litter Size in Hu Sheep Through Upregulation of Promoter Activity by Transcription Factor MTF-1. Front Genet 2019; 10:1011. [PMID: 31708965 PMCID: PMC6824215 DOI: 10.3389/fgene.2019.01011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Nuclear receptor subfamily 5 group A member 2 (NR5A2), also referred to as LRH-1 or FTF, is an orphan nuclear hormone receptor that is involved in regulating embryonic development, ovarian granulosa cell differentiation, gonadal sex differentiation, and steroidogenesis in mammals. However, little is known about how NR5A2 regulates reproduction in sheep. In this study, we amplified the promoter sequence of NR5A2 and determined that its core promoter region ranged from -721 nt to -281 nt. A T > G polymorphism at -700 nt was detected in the core promoter region. Association analysis found that the litter sizes of Hu ewes at their second and average parities with genotype GG (2.20 ± 0.20 and 1.97 ± 0.06, respectively) were significantly higher than those of ewes with genotype TG (1.68 ± 0.10 and 1.74 ± 0.05, respectively) (p < 0.05) and TT (1.67 ± 0.10 and 1.62 ± 0.06, respectively) (p < 0.05). The litter size of Hu ewes at their third parity with genotype GG (2.10 ± 0.10) was significantly higher than that of ewes with genotype TT (1.56 ± 0.12) (p < 0.05). A luciferase assay showed that the -700G allele increased the luciferase activity relative to the -700T allele. Furthermore, the -700T > G polymorphism created a novel binding site for metal-regulatory transcription factor 1 (MTF-1). A competitive electrophoretic mobility shift assay confirmed that MTF-1 specifically bound with the G-type promoter of NR5A2. An overexpression experiment demonstrated that MTF-1 was involved in the alteration of NR5A2 transcription activity and further increased NR5A2 gene mRNA expression. Our findings revealed that the -700T > G polymorphism promoted NR5A2 expression due to the positive effects on NR5A2 gene transcription activity by MTF-1 and thereby increased fecundity in Hu sheep.
Collapse
Affiliation(s)
- Yinxia Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yong Qian
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chunhua Meng
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huili Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jifeng Zhong
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shaoxian Cao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
7
|
Wu C, Feng J, Li L, Wu Y, Xie H, Yin Y, Ye J, Li Z. Liver receptor homologue 1, a novel prognostic marker in colon cancer patients. Oncol Lett 2018; 16:2833-2838. [PMID: 30127869 PMCID: PMC6096149 DOI: 10.3892/ol.2018.8988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/13/2018] [Indexed: 01/31/2023] Open
Abstract
Liver receptor homologue 1 (LRH-1) is an orphan nuclear receptor that is highly expressed in a variety of cancer tissues, promotes tumor cell proliferation and metastasis, and is involved in the tumor cell cycle and apoptosis. The aim of the present study was to assess the association between the expression of LRH-1 and the prognosis of patients with colon cancer. Immunohistochemistry was used to detect the expression of LRH1 in 128 cases of colon cancer and adjacent tissues. The 5-year survival rate was obtained from telephone follow-up data, outpatient review and through access to medical records. Positive expression of LRH-1 was found in 108/128 colon cancer samples, compared with 17/128 normal tissues. Statistical analysis showed that positive LRH-1 expression was significantly associated with clinical pathological stage, depth of invasion and lymph node metastasis. The overall survival (OS) rate of patients with positive LRH-1 expression was significantly lower than that of patients with low expression. Multivariate analysis showed that LRH-1 expression could be used as an independent predictor of OS. In conclusion, the present findings suggest that LRH-1 may serve an important role in the development and progression of colon cancer, with potential value as a prognostic molecular marker that could be used to assist in the diagnosis and evaluation of colon cancer. LRH-1 may become a target for novel therapies for patients with colon cancer.
Collapse
Affiliation(s)
- Cong Wu
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Jin Feng
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Ling Li
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Yugang Wu
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Haibin Xie
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Yong Yin
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Jing Ye
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Zhong Li
- Department of General Surgery, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
8
|
Mutation -388 C>G of NR5A1 gene affects litter size and promoter activity in sheep. Anim Reprod Sci 2018; 196:19-27. [PMID: 30017479 DOI: 10.1016/j.anireprosci.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 05/01/2018] [Indexed: 11/22/2022]
Abstract
The Nuclear receptor superfamily 5, group A, member 1 (NR5A1) gene encodes a nuclear receptor that regulates the transcription of genes involved in steroidogenesis, follicular development and female fertility. Little, however, is known about the relationship of this gene with reproductive performance in sheep. In this study, the transcription initiation site of Hu sheep NR5A1 gene was located 193 nucleotides (i.e., at -193 nt) before the translational start site (ATG). The core promoter region of the NR5A1 gene ranged from -696 nt to -298 nt, and a C>G mutation at -388 nt was detected in this region. Association analysis indicated ewes with the GG genotype had greater litter size at the second and third parity than those with the CC genotype (P < 0.05). The results from the luciferase assay provided evidence that the -388 G allele increased luciferase activity compared with that of the -388 C allele. Furthermore, the -388 C>G mutation lost a CpG site and gained a novel binding site for the transcription factor, SP1, and results from an overexpression experiment and methylation analysis indicated transcription factor SP1 and methylation of the -388 C>G mutation were both involved in alteration of NR5A1 transcription activity. Results of the present study revealed that the -388 C>G mutation lost a CpG site and promoted NR5A1 gene expression, which completely superimposed positive effects on NR5A1 gene transcription activity by transcription factor SP1, resulting in a fecundity increase in Hu sheep.
Collapse
|
9
|
Abdoli R, Zamani P, Mirhoseini SZ, Ghavi Hossein-Zadeh N, Nadri S. A review on prolificacy genes in sheep. Reprod Domest Anim 2016; 51:631-7. [DOI: 10.1111/rda.12733] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/20/2016] [Indexed: 12/01/2022]
Affiliation(s)
- R Abdoli
- Department of Animal Science; Faculty of Agricultural Sciences; University of Guilan; Rasht Iran
| | - P Zamani
- Department of Animal Science; Faculty of Agriculture; Bu-Ali Sina University; Hamedan Iran
| | - SZ Mirhoseini
- Department of Animal Science; Faculty of Agricultural Sciences; University of Guilan; Rasht Iran
| | - N Ghavi Hossein-Zadeh
- Department of Animal Science; Faculty of Agricultural Sciences; University of Guilan; Rasht Iran
| | - S Nadri
- Department of Animal Science; Faculty of Agriculture; Bu-Ali Sina University; Hamedan Iran
| |
Collapse
|