1
|
Haque A, Drasites KP, Cox A, Capone M, Myatich AI, Shams R, Matzelle D, Garner DP, Bredikhin M, Shields DC, Vertegel A, Banik NL. Protective Effects of Estrogen via Nanoparticle Delivery to Attenuate Myelin Loss and Neuronal Death after Spinal Cord Injury. Neurochem Res 2021; 46:2979-2990. [PMID: 34269965 DOI: 10.1007/s11064-021-03401-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Spinal cord injury (SCI) is associated with devastating neurological deficits affecting more than 11,000 Americans each year. Although several therapeutic agents have been proposed and tested, no FDA-approved pharmacotherapy is available for SCI treatment. We have recently demonstrated that estrogen (E2) acts as an antioxidant and anti-inflammatory agent, attenuating gliosis in SCI. We have also demonstrated that nanoparticle-mediated focal delivery of E2 to the injured spinal cord decreases lesion size, reactive gliosis, and glial scar formation. The current study tested in vitro effects of E2 on reactive oxygen species (ROS) and calpain activity in microglia, astroglia, macrophages, and fibroblasts, which are believed to participate in the inflammatory events and glial scar formation after SCI. E2 treatment decreased ROS production and calpain activity in these glial cells, macrophages, and fibroblast cells in vitro. This study also tested the efficacy of fast- and slow-release nanoparticle-E2 constructs in a rat model of SCI. Focal delivery of E2 via nanoparticles increased tissue distribution of E2 over time, attenuated cell death, and improved myelin preservation in injured spinal cord. Specifically, the fast-release nanoparticle-E2 construct reduced the Bax/Bcl-2 ratio in injured spinal cord tissues, and the slow-release nanoparticle-E2 construct prevented gliosis and penumbral demyelination distal to the lesion site. These data suggest this novel E2 delivery strategy to the lesion site may decrease inflammation and improve functional outcomes following SCI.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| | - Kelsey P Drasites
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.,Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA.,Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
| | - April Cox
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA
| | - Mollie Capone
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.,Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA
| | - Ali I Myatich
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.,Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA.,Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
| | - Ramsha Shams
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.,Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA.,Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA.,Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Dena P Garner
- Department of Health and Human Performance, The Citadel, 171 Moultrie St, Charleston, SC, 29409, USA
| | | | - Donald C Shields
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Naren L Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA. .,Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, USA. .,Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC, 29401, USA. .,Department of Neurosurgery and Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
| |
Collapse
|
2
|
Regionally infused lidocaine can dose-dependently protect the ischemic spinal cord in rabbits and may be associated with the EAA changes. Neurosci Lett 2020; 725:134889. [PMID: 32147499 DOI: 10.1016/j.neulet.2020.134889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE In our previous study, we found that lidocaine, infused through the abdominal aorta, could protect the spinal cord against the ischemia-reperfusion (I/R) injury caused by aortic occlusion. However, whether lidocaine protective effects have dose-dependent properties and its underlying mechanisms still remain unclear. This study was designed to investigate whether regionally infused lidocaine could dose-dependently protect spinal cord against I/R injury in rabbits and its underlying mechanism. METHODS 46 New Zealand white rabbits were randomized into six groups: Group NS (normal saline control); Group L10 (lidocaine 10 mg/kg); Group L20 (lidocaine 20 mg/kg); Group L40 (lidocaine 40 mg/kg); Group L80 (lidocaine 80 mg/kg) and Group Sham. In Group NS, Group L10, Group L20, Group L40 and Group L80, spinal cord ischemia was induced by infrarenal aortic occlusion for 30 min. The sham group did not receive spinal cord ischemia. During the occlusion, normal saline or lidocaine at different doses was infused continuously through a catheter into the clamped abdominal aorta respectively. Neurologic behavior functions were assessed according to the Tarlov scale system at the moments of 0, 6, 24 and 48 h after reperfusion. The neural injuries were evaluated by the histological examination and the count of normal α-motor neurons in the ventral horn. The levels of excitatory amino acids (EAAs) in the spinal cord, including glutamate (Glu) and aspartic acid (Asp), were analyzed by high performance liquid chromatography with fluorescence detection. RESULTS The Tarlov scales in the Group L20 and the Group L40 were significantly higher than those in the Group NS at 24 and 48 h after reperfusion (P < 0.05). 12.5 % animals in Group L40 and 25 % animals in Group L20 were paraplegic versus 75 % animals in Group NS at 48 h after reperfusion (P < 0.05). The median of normal α-motor neurons in the L20, L40 and L80 groups was 7.5, 9 and 5 respectively which was significantly higher than in the NS group (count 0, P < 0.05). The levels of L-ASP and L-Glu remarkably decreased in the Group L10 and the Group L40 compared to Group NS (P < 0.05). CONCLUSIONS These data revealed that regional administration of lidocaine through the abdominal aorta can provide dose-dependent protection on spinal cord I/R in rabbits. Inhibition of EAA release may be one of the underlying mechanisms.
Collapse
|
3
|
Zhou Z, Han B, Jin H, Chen A, Zhu L. Changes in long non-coding RNA transcriptomic profiles after ischemia-reperfusion injury in rat spinal cord. PeerJ 2020; 8:e8293. [PMID: 31934506 PMCID: PMC6951290 DOI: 10.7717/peerj.8293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
With the aim of exploring expression profiles and biological functions of long non-coding RNA (lncRNA) and mRNAs after spinal cord ischemia-reperfusion injury (SCII), differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) in rat spinal cords were identified following SCII through high-throughput RNA sequencing. In total, 1,455 lncRNAs and 6,707 mRNAs were observed to be differentially expressed (—Fold Change— ≥ 2 and P < 0.05) after SCII, including 761 up-regulated and 694 down-regulated lncRNAs, 3,772 up-regulated and 2,935 down-regulated mRNAs. Gene ontology and KEGG pathway analysis showed that the DElncRNAs and DEmRNAs were implicated in many different biological processes and pathways. Further, lncRNA-mRNA co-expression networks were built to explore the potential roles of these DElncRNAs. Our results demonstrate genome-wide lncRNA and mRNA expression patterns in spinal cords after SCII, which may play vital roles in post-SCII pathophysiological processes. These findings are important for future functional research on the lncRNAs involved in SCII and might be critical for providing new insight into identification of potential targets for SCII therapy.
Collapse
Affiliation(s)
- Zhibin Zhou
- Department of Orthopaedics, Changzheng Hospital, Second Medical University, Shanghai, China
| | - Bin Han
- Department of Orthopaedics, Changzheng Hospital, Second Medical University, Shanghai, China
| | - Hai Jin
- Department of Neurosurgery, 202 Hospital of China Medical University, Shengyang, Liaoning, China
| | - Aimin Chen
- Department of Orthopaedics, Changzheng Hospital, Second Medical University, Shanghai, China
| | - Lei Zhu
- Department of Orthopaedics, Changzheng Hospital, Second Medical University, Shanghai, China
| |
Collapse
|
4
|
Zhou Y, Su P, Pan Z, Liu D, Niu Y, Zhu W, Yao P, Song Y, Sun Y. Combination Therapy With Hyperbaric Oxygen and Erythropoietin Inhibits Neuronal Apoptosis and Improves Recovery in Rats With Spinal Cord Injury. Phys Ther 2019; 99:1679-1689. [PMID: 31504911 DOI: 10.1093/ptj/pzz125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/03/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Apoptosis plays an important role in various diseases, including spinal cord injury (SCI). Hyperbaric oxygen (HBO) and erythropoietin (EPO) promote the recovery from SCI, but the relationship between apoptosis and the combination therapeutic effect is not completely clear. OBJECTIVE The purpose of this study was to investigate the effects of HBO and EPO on SCI and the mechanisms that underlie their therapeutic benefits. DESIGN The study was designed to explore the effects of HBO and EPO on SCI through a randomized controlled trial. METHODS Sixty young developing female Sprague-Dawley rats were randomly divided into groups of 12 rats receiving sham, SCI, HBO, EPO, or HBO plus EPO. The SCI model was modified with the Allen method to better control consistency. HBO was performed for 1 hour per day for a total of 21 days, and EPO was given once per week for a total of 3 weeks. Both methods were performed 2 hours after SCI. Locomotor function was evaluated with the 21-point Basso-Beattie-Bresnahan Locomotor Rating Scale, an inclined-plane test, and a footprint analysis. All genes were detected by Western blotting and immunohistochemistry. The level of cell apoptosis was determined by Hoechst staining. RESULTS The results showed that HBO and EPO promoted the recovery of locomotor function in the hind limbs of rats by inhibiting the apoptosis of neurons. During this period, the expression of B-cell lymphoma/leukemia 2 protein (Bcl-2) increased significantly, whereas the expression of Bcl-2-associated X protein (Bax) and cleaved caspase 3 decreased significantly, indicating the inhibition of apoptosis. Meanwhile, the expression of G protein-coupled receptor 17 decreased, and that of myelin basic protein increased, suggesting that there may be a potential connection between demyelination and neuronal apoptosis. LIMITATIONS The limitations of the study include deviations in the preparation of SCI models; lack of reverse validation of molecular mechanisms; absence of in vitro cell experiments; and only one time point after SCI was studied. CONCLUSIONS HBO and EPO treatments are beneficial for SCI, especially when the 2 therapies are combined.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Orthopedics, Shaoxing People's Hospital, Shaoxing, China; Department of Orthopedics and The Experimental Center, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Peng Su
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Zhenzhen Pan
- Department of Radiology, People's Hospital of Changshan, Quzhou, China
| | - Dong Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Yanping Niu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Weiqing Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Pengfei Yao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Yue Song
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University
| | - Yongming Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| |
Collapse
|
5
|
Klemm P, Hurst J, Dias Blak M, Herrmann T, Melchinger M, Bartz-Schmidt KU, Zeck G, Schultheiss M, Spitzer MS, Schnichels S. Hypothermia protects retinal ganglion cells against hypoxia-induced cell death in a retina organ culture model. Clin Exp Ophthalmol 2019; 47:1043-1054. [PMID: 31152487 DOI: 10.1111/ceo.13565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Hypoxia contributes to retinal damage in several retinal diseases, including central retinal artery occlusion, with detrimental consequences like painless, monocular loss of vision. Currently, the treatment options are severely limited due to the short therapy window, as the neuronal cells, especially the retinal ganglion cells (RGCs), are irreversibly damaged within the first few hours. Hypothermia might be a possible treatment option or at least might increase the therapy window. METHODS To investigate the neuroprotective effect of hypothermia after retinal hypoxia, an easy-to-use ex vivo retinal hypoxia organ culture model developed in our laboratory was used that reliably induced retinal damage on a structural, molecular and functional level. The neuroprotective effect of hypothermia after retinal hypoxia was analysed using optical coherence tomography scans, histological stainings, quantitative real-time polymerase chain reaction, western blotting and microelectrode array recordings. RESULTS Two different hypothermic temperatures (30°C and 20°C) were evaluated, both exhibited strong neuroprotective effects. Most importantly, hypothermia increased RGC survival after retinal hypoxia. Furthermore, hypothermia counteracted the hypoxia-induced RGC death, reduced macroglia activation, attenuated retinal thinning and protected from loss of spontaneous RGC activity. CONCLUSIONS These results indicate that already a mild reduction in temperature protects the RGCs against damage and could function as a promising therapeutic option for hypoxic diseases.
Collapse
Affiliation(s)
- Patricia Klemm
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| | - José Hurst
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| | - Matthias Dias Blak
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany.,Department of Ophthalmology, Klinikum Stuttgart, Stuttgart, Germany
| | - Thoralf Herrmann
- Department of Neurophysics, NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Marion Melchinger
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| | - Karl U Bartz-Schmidt
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| | - Günther Zeck
- Department of Neurophysics, NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Maximilian Schultheiss
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany.,Clinic for Ophthalmology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin S Spitzer
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany.,Clinic for Ophthalmology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sven Schnichels
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Tian SH, Yu DJ, Li ZY, Zhang WL. The inhibition of microRNA-203 on ischemic reperfusion injury after total knee arthroplasty via suppressing MYD88-mdiated toll-like receptor signaling pathway. Gene 2019; 697:175-183. [DOI: 10.1016/j.gene.2019.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
|
7
|
Sun Z, Zhao T, Lv S, Gao Y, Masters J, Weng H. Dexmedetomidine attenuates spinal cord ischemia-reperfusion injury through both anti-inflammation and anti-apoptosis mechanisms in rabbits. J Transl Med 2018; 16:209. [PMID: 30031397 PMCID: PMC6054716 DOI: 10.1186/s12967-018-1583-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/17/2018] [Indexed: 01/10/2023] Open
Abstract
Background Dexmedetomidine (Dex) can improve neuronal viability and protect the spinal cord from ischemia–reperfusion (I/R) injury, but the underlying mechanisms are not fully understood. This study investigated the effects of dexmedetomidine on the toll-like receptor 4 (TLR4)-mediated nuclear factor κB (NF-κB) inflammatory system and caspase-3 dependent apoptosis induced by spinal cord ischemia–reperfusion injury. Methods Twenty-four rabbits were divided into three groups: I/R, Dex (10 µg/kg/h prior to ischemia until reperfusion), and Sham. Abdominal aortic occlusion was carried out for 30 min in the I/R and Dex groups. Hindlimb motor function was assessed using the Tarlov scoring system for gait evaluation. Motor neuron survival and apoptosis in the ventral grey matter were assessed by haematoxylin–eosin staining and terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labelling staining. The expression and localisation of ionised calcium-binding adaptor molecule 1, TLR4, NF-κB and caspase-3 were assessed by immunoreactivity analysis. The levels of interleukin 1β and tumour necrosis factor α were assessed using enzyme-linked immunosorbent assays. Results Perioperative treatment with dexmedetomidine was associated with a significant preservation of locomotor function following spinal cord ischemia–reperfusion injury with increased neuronal survival in the spinal cord compared to control. In addition, dexmedetomidine suppressed microglial activation, inhibited the TLR4-mediated NF-κB signalling pathway, and inhibited the caspase-3 dependent apoptosis. Conclusions Dexmedetomidine confers neuroprotection against spinal cord ischemia–reperfusion injury through suppression of spinal cord inflammation and neuronal apoptosis. A reduction in microglial activation and inhibition of both the TLR4-mediated NF-κB signalling pathway and caspase-3 dependent apoptosis are implicated.
Collapse
Affiliation(s)
- Zhixiang Sun
- Department of Anesthesiology, Shanghai Fengxian District Central Hospital, Southern Medical University, Shanghai, People's Republic of China
| | - Tianyun Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shaojun Lv
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Ying Gao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Joe Masters
- Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Hao Weng
- Department of Anesthesiology, Shanghai Fengxian District Central Hospital, Southern Medical University, Fengxian District, Shanghai Nanfeng Road on the 6600th, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats. Ann Thorac Surg 2018; 105:1523-1530. [DOI: 10.1016/j.athoracsur.2017.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022]
|
9
|
ERK phosphorylation plays an important role in the protection afforded by hypothermia against renal ischemia-reperfusion injury. Surgery 2017; 161:444-452. [DOI: 10.1016/j.surg.2016.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/14/2016] [Accepted: 07/29/2016] [Indexed: 12/30/2022]
|
10
|
Hu J, Yu Q, Xie L, Zhu H. Targeting the blood-spinal cord barrier: A therapeutic approach to spinal cord protection against ischemia-reperfusion injury. Life Sci 2016; 158:1-6. [PMID: 27329433 DOI: 10.1016/j.lfs.2016.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Abstract
One of the principal functions of physical barriers between the blood and central nervous system protects system (i.e., blood brain barrier and blood-spinal cord barrier) is the protection from toxic and pathogenic agents in the blood. Disruption of blood-spinal cord barrier (BSCB) plays a key role in spinal cord ischemia-reperfusion injury (SCIRI). Following SCIRI, the permeability of the BSCB increases. Maintaining the integrity of the BSCB alleviates the spinal cord injury after spinal cord ischemia. This review summarizes current knowledge of the structure and function of the BSCB and its changes following SCIRI, as well as the prevention and cure of SCIRI and the role of the BSCB.
Collapse
Affiliation(s)
- Ji Hu
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430077, Hubei Province, China.
| | - Qijing Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Lijie Xie
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430077, Hubei Province, China
| | - Hongfei Zhu
- Department of Anesthesiology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei Province, China
| |
Collapse
|