1
|
Jadhao KR, Kale SS, Chavan NS, Janjal PH. Genome-wide analysis of the SPL transcription factor family and its response to water stress in sunflower (Helianthus annuus). Cell Stress Chaperones 2023; 28:943-958. [PMID: 37938528 PMCID: PMC10746691 DOI: 10.1007/s12192-023-01388-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
SPL (SQUAMOSA promoter binding proteins-like) are plant-specific transcription factors that play essential roles in a variety of developmental processes as well as the ability to withstand biotic and abiotic stresses. To date, numerous species have been investigated for the SPL gene family, but so far, no SPL family genes have been thoroughly identified and characterized in the sunflower (Helianthus annuus). In this study, 25 SPL genes were identified in the sunflower genome and were unevenly distributed on 11 chromosomes. According to phylogeny analysis, 59 SPL genes from H. annuus, O. sativa, and A. thaliana were clustered into seven groups. Furthermore, the SPL genes in groups-I and II were demonstrated to be potential targets of miR156. Synteny analysis showed that 7 paralogous gene pairs exist in HaSPL genes and 26 orthologous gene pairs exist between sunflower and rice, whereas 21 orthologous gene pairs were found between sunflower and Arabidopsis. Segmental duplication appears to have played a vital role in the expansion processes of sunflower SPL genes, and because of selection pressure, all duplicated genes have undergone purifying selection. Tissue-specific gene expression analysis of the HaSBP genes proved their diverse spatiotemporal expression patterns, which were predominantly expressed in floral organs and differentially expressed in stem, axil, and root tissues. The expression pattern of HaSPL genes under water stress showed broad involvement of HaSPLs in the response to flood and drought stresses. This genome-wide identification investigation provides detailed information on the sunflower SPL transcription factor gene family and establishes a strong platform for future research on sunflower responses to abiotic stress tolerance.
Collapse
Affiliation(s)
- Kundansing R Jadhao
- Department of Bioinformatics, MGM College of Agricultural Biotechnology, Aurangabad, 431007, India.
| | - Sonam S Kale
- Department of Plant Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431003, India
| | - Nilesh S Chavan
- Department of Microbiology and Environmental Biotechnology, MGM College of Agricultural Biotechnology, Aurangabad, 431003, India
| | - Pandharinath H Janjal
- Department of Bioinformatics, MGM College of Agricultural Biotechnology, Aurangabad, 431007, India
| |
Collapse
|
2
|
Wang H, Lu Z, Xu Y, Kong L, Shi J, Liu Y, Fu C, Wang X, Wang ZY, Zhou C, Han L. Genome-wide characterization of SPL family in Medicago truncatula reveals the novel roles of miR156/SPL module in spiky pod development. BMC Genomics 2019; 20:552. [PMID: 31277566 PMCID: PMC6612136 DOI: 10.1186/s12864-019-5937-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/26/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND SQUAMOSA Promoter Binding Protein-Likes (SPLs) proteins are plant-specific transcription factors that play many crucial roles in plant growth and development. However, there is little information about SPL family in the model legume Medicago truncatula. RESULTS In this study, a total of 23 MtSPL genes were identified in M. truncatula genome, in which 17 of the MtSPLs contained the putative MtmiR156 binding site at the coding or 3' UTR regions. Tissue-specific expression pattern analysis showed that most MtmiR156-targeted MtSPLs were highly expressed in seed and pod. The observation of MtmiR156B-overexpressing plants reveals that MtmiR156/MtSPL modules are not only involved in the development of leaves and branches, but also in the seed pod development, especially the formation of spine on pod. CONCLUSION The spines on pods are developed in many plant species, which allow pods to adhere to the animals, and then be transported on the outside. This study sheds light on the new function of SPL family in seed dispersal by controlling the formation of spiky pod, and provides insights on understanding evolutionary divergence of the members of SPL gene family among plant species.
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266101, China.,School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266101, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266101, China
| | - Lingcui Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266101, China
| | - Jianjun Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266101, China
| | - Yafei Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266101, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xiaoshan Wang
- Department of Grassland Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zeng-Yu Wang
- Noble Research Institute, LLC, Ardmore, OK, USA.,Present Address: Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266101, China.
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266101, China.
| |
Collapse
|
3
|
Wang C, Wang Q, Zhu X, Cui M, Jia H, Zhang W, Tang W, Leng X, Shen W. Characterization on the conservation and diversification of miRNA156 gene family from lower to higher plant species based on phylogenetic analysis at the whole genomic level. Funct Integr Genomics 2019; 19:933-952. [PMID: 31172301 DOI: 10.1007/s10142-019-00679-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 01/18/2023]
Abstract
miRNA156 family members (miR156s) participate in regulating the transition of plant vegetative and reproductive growth, flower development, and formation of berry skin color by negatively modulating their target gene SPLs. However, the evolution and functional diversification of miR156s in plants remain elusive. Phylogenetic analysis on 310 miR156s from 51 plant species on miRBase 21.0 showed that only miR156a could be conserved in the 51 plant species, but their sequences exhibited variation; another set of miR156s, such as miR156m/n/o/p/q/r/s/t/u/v/w/x/y/z, was identified only in certain special plant species (Glycine max and Malus); also, all base variations in the sequences of 310 miR156s occurred within one miR156 seed sequence, "TGACAGAAGAGAGTGAGCAC," and the changed base sites were mainly located at the 11th and 14th bases from the 5' end of the miR156 seed sequence, in which some base variations of miR156s resulted in a difference in miR156 targeting modes; by contrast, miR156 precursor sequences are highly divergent across diverse species. Similarly, cis-regulatory motifs on the promoter sequence of MIR156s in various plants also exhibited significant discrepancy. The intragenic MIR156 genes overlapped their target SBP genes, thereby suggesting that some microRNAs (miRNAs) originate from duplication of target genes. These traits might be the reasons of the conservation and diversification of miR156 gene family. This study identified the conserved seed sequence "TGACAGAAGAGAGTGAGCAC," and the sequence variation characterization, of miR156 family evolution, also investigated the varied traits of their promoters, precursors, and mature sequences in sequence evolutions and found some miRNAs might originate from duplication of target genes. Our findings will contribute to our understanding of the functional diversification of miRNAs and the interactions of miRNA/target pairs based on the evolutionary history of miRNA genes.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qinglian Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Menjie Cui
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenying Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Tang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Nanda S, Hussain S. Genome-wide identification of the SPL gene family in Dichanthelium oligosanthes. Bioinformation 2019; 15:165-171. [PMID: 31354191 PMCID: PMC6637398 DOI: 10.6026/97320630015165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/12/2019] [Accepted: 01/12/2019] [Indexed: 11/23/2022] Open
Abstract
SQUAMOSA promoter-binding protein-like (SPL) transcription factors play vital roles in various plant physiological processes. Although, the identification of the SPL gene family has been done in C4 grass plants, including rice and maize, the same has not been characterized in the C3 grass species Dichanthelium oligosanthes. In this study, 14 SPL genes were identified in the genome of D. oligosanthes. Gene structure analysis of the identified DoSPLs revealed the similarity and redundancy in their exon/intron organizations. Sequence comparisons within the DoSPLs and along with rice SPLs revealed the putative paralogs and orthologs in D. oligosanthes SPL genes. Phylogenetic analysis clustered the DoSPLs into eight groups along with other plant SPLs. Identification of the conserved SBP motifs in all 14 DoSPLs suggested them to be putative SPLs. In addition, the prediction of sub-cellular localization and associated functions for DoSPLs further supported to be SPL genes. The outcome of this study can serve as a framework for the isolation and functional validation of SPL genes in D. oligosanthes.
Collapse
Affiliation(s)
- Satyabrata Nanda
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 311440, China
| | - Sajid Hussain
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 311440, China
| |
Collapse
|
5
|
Genome-wide identification and characterization of SPL transcription factor family and their evolution and expression profiling analysis in cotton. Sci Rep 2018; 8:762. [PMID: 29335584 PMCID: PMC5768680 DOI: 10.1038/s41598-017-18673-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/04/2017] [Indexed: 12/01/2022] Open
Abstract
Plant specific transcription factors, SQUAMOSA promoter-binding protein-like (SPL), are involved in many biological processes. However, no systematical study has been reported in cotton. In this study, a total of 177 SPL genes were identified, including 29, 30, 59 and 59 SPLs in Gossypium arboreum, G. raimondii, G. barbadense, and G. hirsutum, respectively. These SPL genes were classified into eight phylogenetical groups. The gene structure, conserved motif, and clustering were highly conserved within each orthologs. Two zinc finger-like structures (Cys3His and Cys2HisCys) and NLS segments were existed in all GrSPLs. Segmental duplications play important roles in SPL family expansion, with 20 genes involved in segmental duplications and 2 in tandem duplications, and ten ortholog pairs in syntenic regions between G. raimondii and A. thaliana. Several putative cis-elements, involved in light, stresses and phytohormones response, were found in the promoter regions of GhSPLs, suggesting that plant responses to those environmental changes may be induced through targeting SPL transcription factors. RNA-seq analysis shows that SPL genes were differentially expressed in cotton; some were highly expressed during fiber initiation and early development. Comparing with other plants, SPL genes show subfunctionalization, lost and/or gain functions in cotton during long-term domestication and evolution.
Collapse
|
6
|
Pan F, Wang Y, Liu H, Wu M, Chu W, Chen D, Xiang Y. Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis). BMC Genomics 2017; 18:486. [PMID: 28655295 PMCID: PMC5488377 DOI: 10.1186/s12864-017-3882-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The SQUAMOSA promoter binding protein-like (SPL) proteins are plant-specific transcription factors (TFs) that function in a variety of developmental processes including growth, flower development, and signal transduction. SPL proteins are encoded by a gene family, and these genes have been characterized in two model grass species, Zea mays and Oryza sativa. The SPL gene family has not been well studied in moso bamboo (Phyllostachys edulis), a woody grass species. RESULTS We identified 32 putative PeSPL genes in the P. edulis genome. Phylogenetic analysis arranged the PeSPL protein sequences in eight groups. Similarly, phylogenetic analysis of the SBP-like and SBP proteins from rice and maize clustered them into eight groups analogous to those from P. edulis. Furthermore, the deduced PeSPL proteins in each group contained very similar conserved sequence motifs. Our analyses indicate that the PeSPL genes experienced a large-scale duplication event ~15 million years ago (MYA), and that divergence between the PeSPL and OsSPL genes occurred 34 MYA. The stress-response expression profiles and tissue-specificity of the putative PeSPL gene promoter regions showed that SPL genes in moso bamboo have potential biological functions in stress resistance as well as in growth and development. We therefore examined PeSPL gene expression in response to different plant hormone and drought (polyethylene glycol-6000; PEG) treatments to mimic biotic and abiotic stresses. Expression of three (PeSPL10, -12, -17), six (PeSPL1, -10, -12, -17, -20, -31), and nine (PeSPL5, -8, -9, -14, -15, -19, -20, -31, -32) genes remained relatively stable after treating with salicylic acid (SA), gibberellic acid (GA), and PEG, respectively, while the expression patterns of other genes changed. In addition, analysis of tissue-specific expression of the moso bamboo SPL genes during development showed differences in their spatiotemporal expression patterns, and many were expressed at high levels in flowers and leaves. CONCLUSIONS The PeSPL genes play important roles in plant growth and development, including responses to stresses, and most of the genes are expressed in different tissues. Our study provides a comprehensive understanding of the PeSPL gene family and may enable future studies on the function and evolution of SPL genes in moso bamboo.
Collapse
Affiliation(s)
- Feng Pan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yue Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Huanglong Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wenyuan Chu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Danmei Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China. .,Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|