1
|
Zhu Y, Ouyang H, Lin W, Li W, Cao X, Chang Y, He J. GC-MS method for simultaneous determination and pharmacokinetic investigation of five volatile components in rat plasma after oral administration of the essential oil extract of Pogostemon cablin. Heliyon 2024; 10:e32444. [PMID: 38933986 PMCID: PMC11201108 DOI: 10.1016/j.heliyon.2024.e32444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Pogostemon cablin (PC) is a traditional Chinese medicine (TCM) and food as well as an important essential oil plant in China. PC essential oil exerts pharmacological effects such as anti-inflammatory, anti-oxidant, anti-platelet, anti-thrombotic, and anti-depressant. This study established a reliable and sensitive gas chromatography-mass spectrometry (GC-MS) method for the simultaneous determination of the pharmacokinetics of patchouli alcohol, β-elemene, β-caryophyllene, caryophyllene oxide, and farnesol in the plasma of rats after oral administration of PC essential oil extract. Using ethyl acetate to prepare the plasma samples, and p-menthone was used as the internal standard (IS). An HP5-MS column (0.25 μm × 0.25 mm × 30 m) was used for chromatographic separation, and detection was performed in selected ion monitoring (SIM) mode. The accuracies of intra-day and inter-day for all analytes displayed a range of -6.7 %-9.2 %, with precision below 12.5 %. Extraction recoveries for analytes ranged from 74.0 to 106.4 % and matrix effects ranged from 92.4 to 106.9 %. Stability results have demonstrated that the relative standard deviations (RSD) of analytes were below 12.1 %. Therefore, the developed GC-MS method successfully evaluated the pharmacokinetics of five volatile components in PC essential oil extract administered orally to rats.
Collapse
Affiliation(s)
- Yameng Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300193, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huizi Ouyang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300193, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 300193, Tianjin, China
| | - Wenhan Lin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenwen Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiunan Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
2
|
Zhu Y, Ouyang H, Lv Z, Yao G, Ge M, Cao X, Chang Y, He J. Simultaneous determination of multiple components in rat plasma by UPLC-MS/MS for pharmacokinetic studies after oral administration of Pogostemon cablin extract. Front Pharmacol 2024; 15:1293464. [PMID: 38841366 PMCID: PMC11150675 DOI: 10.3389/fphar.2024.1293464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction: Pogostemon cablin (PC) is used in traditional Chinese medicine and food, as it exerts pharmacological effects, such as immune-modulatory, antibacterial, antioxidant, antitumor, and antiviral. Currently, the pharmacokinetics (PK) studies of PC mainly focus on individual components. However, research on these individual components cannot reflect the actual PK characteristics of PC after administration. Therefore, the simultaneous determination of multiple components in rat plasma using UPLC-MS/MS was used for the pharmacokinetic study after oral administration of PC extract in this study, providing reference value for the clinical application of PC. Methods: In the present study, a reliable and sensitive ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous determination of 15 prototype components (vanillic acid, vitexin, verbascoside, isoacteoside, hyperoside, cosmosiin, apigenin, β-rhamnocitrin, acacetin, ombuin, pogostone, pachypodol, vicenin-2, retusin, and diosmetin-7-O-β-D-glucopyranoside) in rat plasma after oral administration of the PC extract. Plasma samples were prepared via protein precipitation using acetonitrile, and icariin was used as the internal standard (IS). Results: The intra-day and inter-day accuracies ranged from -12.0 to 14.3%, and the precision of the analytes was less than 11.3%. The extraction recovery rate of the analytes ranged from 70.6-104.5%, and the matrix effects ranged from 67.4-104.8%. Stability studies proved that the analytes were stable under the tested conditions, with a relative standard deviation lower than 14.1%. Conclusion: The developed method can be applied to evaluate the PK of 15 prototype components in PC extracts of rats after oral administration using UPLC-MS/MS, providing valuable information for the development and clinical safe, effective, and rational use of PC.
Collapse
Affiliation(s)
- Yameng Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huizi Ouyang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhenguo Lv
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangzhe Yao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minglei Ge
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiunan Cao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Wang X, Zhong L, Zou X, Gong L, Zhuang J, Zhang D, Zheng H, Wang X, Wu D, Zhan R, Chen L. GC-MS and UHPLC-QTOFMS-assisted identification of the differential metabolites and metabolic pathways in key tissues of Pogostemon cablin. FRONTIERS IN PLANT SCIENCE 2023; 14:1098280. [PMID: 36923120 PMCID: PMC10009150 DOI: 10.3389/fpls.2023.1098280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pogostemon cablin is an important aromatic medicinal herb widely used in the pharmaceutical and perfume industries. However, our understanding of the phytochemical compounds and metabolites within P. cablin remains limited. To our knowledge, no integrated studies have hitherto been conducted on the metabolites of the aerial parts of P. cablin. In this study, twenty-three volatile compounds from the aerial parts of P. cablin were identified by GC-MS, predominantly sesquiterpenes. Quantitative analysis showed the highest level of patchouli alcohol in leaves (24.89 mg/g), which was 9.12 and 6.69-fold higher than in stems and flowers. UHPLC-QTOFMS was used to analyze the non-volatile compounds of leaf, stem and flower tissues. The differences in metabolites between flower and leaf tissues were the largest. Based on 112, 77 and 83 differential metabolites between flower-leaf, flower-stem and leaf-stem, three tissue-specific biomarkers of metabolites were identified, and the differential metabolites were enriched in several KEGG pathways. Furthermore, labeling differential metabolites in the primary and secondary metabolic pathways showed that flowers accumulated more lipids and amino acids, including proline, lysine and tryptophan; the leaves accumulated higher levels of terpenoids, vitamins and flavonoids, and stems contained higher levels of carbohydrate compounds. Based on the role of acetyl coenzyme A, the distribution and possible exchange mechanism of metabolites in leaves, stems and flowers of P. cablin were mapped for the first time, laying the groundwork for future research on the metabolites in P. cablin and their regulatory role.
Collapse
Affiliation(s)
- Xiaobing Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Liting Zhong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Xuan Zou
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Lizhen Gong
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Jiexuan Zhuang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Danhua Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Hai Zheng
- School of Pharmaceutical Sciences, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Xiaomin Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Daidi Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| | - Likai Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, China
| |
Collapse
|