1
|
Liu X, Wu Z, Feng J, Yuan G, He L, Zhang D, Teng N. A Novel R2R3-MYB Gene LoMYB33 From Lily Is Specifically Expressed in Anthers and Plays a Role in Pollen Development. FRONTIERS IN PLANT SCIENCE 2021; 12:730007. [PMID: 34630475 PMCID: PMC8495421 DOI: 10.3389/fpls.2021.730007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Lily (Lilium spp.) is an important commercial flower crop, but its market popularity and applications are adversely affected by severe pollen pollution. Many studies have examined pollen development in model plants, but few studies have been conducted on flower crops such as lily. GAMYBs are a class of R2R3-MYB transcription factors and play important roles in plant development and biotic resistance; their functions vary in different pathways, and many of them are involved in anther development. However, their function and regulatory role in lily remain unclear. Here, the GAMYB homolog LoMYB33 was isolated and identified from lily. The open reading frame of LoMYB33 was 1620 bp and encoded a protein with 539 amino acids localized in the nucleus and cytoplasm. Protein sequence alignment showed that LoMYB33 contained a conserved R2R3 domain and three BOX motifs (BOX1, BOX2, and BOX3), which were unique to the GAMYB family. LoMYB33 had transcriptional activation activity, and its transactivation domain was located within 90 amino acids of the C-terminal. LoMYB33 was highly expressed during the late stages of anther development, especially in pollen. Analysis of the promoter activity of LoMYB33 in transgenic Arabidopsis revealed that the LoMYB33 promoter was highly activated in the pollen of stage 12 to 13 flowers. Overexpression of LoMYB33 in Arabidopsis significantly retarded growth; the excess accumulation of LoMYB33 also negatively affected normal anther development, which generated fewer pollen grains and resulted in partial male sterility in transgenic plants. Silencing of LoMYB33 in lily also greatly decreased the amount of pollen. Overall, our results suggested that LoMYB33 might play an important role in the anther development and pollen formation of lily.
Collapse
Affiliation(s)
- Xinyue Liu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jingxian Feng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guozhen Yuan
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ling He
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Dehua Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Xu J, Chai N, Zhang T, Zhu T, Cheng Y, Sui S, Li M, Liu D. Prediction of temperature tolerance in Lilium based on distribution and climate data. iScience 2021; 24:102794. [PMID: 34355143 PMCID: PMC8324855 DOI: 10.1016/j.isci.2021.102794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/24/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
There are plenty publications providing guidance for resistant taxa selection by experimental researches while the number of experimental taxa is often restricted. In this study, we presented a concise method to predict the temperature tolerance of wild Lilium in China based on open access botanical and associated environmental datasets. We divided all taxa into five groups to present an overview of Lilium's adaptability to temperature stress. Furthermore, according to the environmental conditions, the prediction of heat and cold tolerance in Lilium was made based on the combined multi-sources data at taxon level. Thirteen taxa with potential temperature tolerance were predicted of 42 taxa. The results showed that not only is tolerance prediction created by large-scale data analysis possible, but that it may supplement traditional laboratory researches with a comprehensive list of taxa.
Collapse
Affiliation(s)
- Jie Xu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Nan Chai
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Ting Zhang
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Ting Zhu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Yulin Cheng
- School of Life Science, Chongqing University, Chongqing 401331, China
| | - Shunzhao Sui
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Mingyang Li
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| | - Daofeng Liu
- Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
3
|
Sun D, Ji X, Jia Y, Huo D, Si S, Zeng L, Zhang Y, Niu L. LreEF1A4, a Translation Elongation Factor from Lilium regale, Is Pivotal for Cucumber Mosaic Virus and Tobacco Rattle Virus Infections and Tolerance to Salt and Drought. Int J Mol Sci 2020; 21:E2083. [PMID: 32197393 PMCID: PMC7139328 DOI: 10.3390/ijms21062083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic translation elongation factors are implicated in protein synthesis across different living organisms, but their biological functions in the pathogenesis of cucumber mosaic virus (CMV) and tobacco rattle virus (TRV) infections are poorly understood. Here, we isolated and characterized a cDNA clone, LreEF1A4, encoding the alpha subunit of elongation factor 1, from a CMV-elicited suppression subtractive hybridization library of Lilium regale. The infection tests using CMV remarkably increased transcript abundance of LreEF1A4; however, it also led to inconsistent expression profiles of three other LreEF1A homologs (LreEF1A1-3). Protein modelling analysis revealed that the amino acid substitutions among four LreEF1As may not affect their enzymatic functions. LreEF1A4 was ectopically overexpressed in petunia (Petunia hybrida), and transgenic plants exhibited delayed leaf and flower senescence, concomitant with increased transcription of photosynthesis-related genes and reduced expression of senescence-associated genes, respectively. A compromised resistance to CMV and TRV infections was found in transgenic petunia plants overexpressing LreEF1A4, whereas its overexpression resulted in an enhanced tolerance to salt and drought stresses. Taken together, our data demonstrate that LreEF1A4 functions as a positive regulator in viral multiplication and plant adaption to high salinity and dehydration.
Collapse
Affiliation(s)
- Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Xiaotong Ji
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Yong Jia
- State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth 6150, Australia
| | - Dan Huo
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Shiying Si
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Lingling Zeng
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
4
|
Analysis of Pollen Allergens in Lily by Transcriptome and Proteome Data. Int J Mol Sci 2019; 20:ijms20235892. [PMID: 31771269 PMCID: PMC6929097 DOI: 10.3390/ijms20235892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
The lily (Lilium spp.) anther contains a lot of pollen. It is not known if lily pollen contains allergens, and therefore screening pollen allergy-related proteins and genes is necessary. The pollen development period of lily 'Siberia' was determined by microscope observation. Early mononuclear microspores and mature pollens were used as sequencing materials. The analysis of the pollen transcriptome identified differentially expressed genes (DEGs), e.g., Profilin, Phl p 7 (Polcalcin), Ole e 1, and Phl p 11, which are associated with pollen allergens. The proteome analysis positively verified a significant increase in pollen allergenic protein content. The expression levels of LoProfiilin and LoPolcalcin, annotated as allergen proteins, gradually increased in mature pollen. LoProfiilin and LoPolcalcin were cloned and their open reading frame lengths were 396 bp and 246 bp, which encoded 131 and 81 amino acids, respectively. Amino acid sequence and structure alignment indicated that the protein sequences of LoProfilin and LoPolcalcin were highly conserved. Subcellular localization analysis showed that LoProfilin protein was localized in the cell cytoplasm and nucleus. LoProfilin and LoPolcalcin were highly expressed in mature pollen at the transcriptional and protein levels. A tertiary structure prediction analysis identified LoProfilin and LoPolcalcin as potential allergens in lily pollen.
Collapse
|