1
|
Wang R, Luo Y, Lan Z, Qiu D. Insights into structure, codon usage, repeats, and RNA editing of the complete mitochondrial genome of Perilla frutescens (Lamiaceae). Sci Rep 2024; 14:13940. [PMID: 38886463 DOI: 10.1038/s41598-024-64509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Perilla frutescens (L.) Britton, a member of the Lamiaceae family, stands out as a versatile plant highly valued for its unique aroma and medicinal properties. Additionally, P. frutescens seeds are rich in Îś-linolenic acid, holding substantial economic importance. While the nuclear and chloroplast genomes of P. frutescens have already been documented, the complete mitochondrial genome sequence remains unreported. To this end, the sequencing, annotation, and assembly of the entire Mitochondrial genome of P. frutescens were hereby conducted using a combination of Illumina and PacBio data. The assembled P. frutescens mitochondrial genome spanned 299,551 bp and exhibited a typical circular structure, involving a GC content of 45.23%. Within the genome, a total of 59 unique genes were identified, encompassing 37 protein-coding genes, 20 tRNA genes, and 2 rRNA genes. Additionally, 18 introns were observed in 8 protein-coding genes. Notably, the codons of the P. frutescens mitochondrial genome displayed a notable A/T bias. The analysis also revealed 293 dispersed repeat sequences, 77 simple sequence repeats (SSRs), and 6 tandem repeat sequences. Moreover, RNA editing sites preferentially produced leucine at amino acid editing sites. Furthermore, 70 sequence fragments (12,680 bp) having been transferred from the chloroplast to the mitochondrial genome were identified, accounting for 4.23% of the entire mitochondrial genome. Phylogenetic analysis indicated that among Lamiaceae plants, P. frutescens is most closely related to Salvia miltiorrhiza and Platostoma chinense. Meanwhile, inter-species Ka/Ks results suggested that Ka/Ks < 1 for 28 PCGs, indicating that these genes were evolving under purifying selection. Overall, this study enriches the mitochondrial genome data for P. frutescens and forges a theoretical foundation for future molecular breeding research.
Collapse
Affiliation(s)
- Ru Wang
- Hubei Minzu University, School of Forestry and Horticulture, Enshi, 445000, China
| | - Yongjian Luo
- Hubei Minzu University, School of Forestry and Horticulture, Enshi, 445000, China
| | - Zheng Lan
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Daoshou Qiu
- Key Laboratory of Crops Genetics and Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Fu ZY, Sa KJ, Park H, Jang SJ, Kim YJ, Lee JK. Utilization of Novel Perilla SSR Markers to Assess the Genetic Diversity of Native Perilla Germplasm Accessions Collected from South Korea. PLANTS (BASEL, SWITZERLAND) 2022; 11:2974. [PMID: 36365424 PMCID: PMC9659169 DOI: 10.3390/plants11212974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The Perilla crop is highly regarded in South Korea, both as a health food and traditional food. However, there is still a lack of Perilla SSR primer sets (PSPSs) for studying genetic variation among accessions of cultivated and weedy types of Perilla crop (CWTPC) from South Korea. In this study, 30 PSPSs were newly developed based on transcriptome contigs in P. frutescens, and 17 of these PSPSs were used to study the genetic diversity, phylogenetic relationships and structure population among 90 accessions of the CWTPC collected from South Korea. A total of 100 alleles were detected from selected 17 PSPSs, with an average of 5.9 alleles per locus. The gene diversity (GD) ranged from 0.164 to 0.831, with an average of 0.549. The average GD values from the cultivated var. frutescens, weedy var. frutescens, and weedy var. crispa, were 0.331, 0.588, and 0.389 respectively. In addition, most variance shown by Perilla SSR markers was within a population (73%). An analysis of the population structure and phylogenetic relationships showed that the genetic relationship among accessions of the weedy var. frutescens and weedy var. crispa is closer than that for the accessions of the cultivated var. frutescens. Based on association analysis between 17 PSPSs and three seed traits in 90 Perilla accessions, we detected 11 PSPSs that together were associated with the seed size and seed hardness traits. Therefore, the newly developed PSPSs will be useful for analyzing genetic variation among accessions of the CWTPC, association mapping, and selection of important morphological traits in Perilla crop breeding programs.
Collapse
Affiliation(s)
- Zhen Yu Fu
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hyeon Park
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - So Jung Jang
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Yeon Joon Kim
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
3
|
Zhang C, Jia C, Liu X, Zhao H, Hou L, Li M, Cui B, Li Y. Genetic Diversity Study on Geographical Populations of the Multipurpose Species Elsholtzia stauntonii Using Transferable Microsatellite Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:903674. [PMID: 35646027 PMCID: PMC9134938 DOI: 10.3389/fpls.2022.903674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Elsholtzia stauntonii Benth. (Lamiaceae) is an economically important ornamental, medicinal and aromatic plant species. To meet the increasing market demand for E. stauntonii, it is necessary to assess genetic diversity within the species to accelerate the process of genetic improvement. Analysis of the transferability of simple sequence repeat (SSR) markers from related species or genera is a fast and economical method to evaluate diversity, and can ensure the availability of molecular markers in crops with limited genomic resources. In this study, the cross-genera transferability of 497 SSR markers selected from other members of the Lamiaceae (Salvia L., Perilla L., Mentha L., Hyptis Jacq., Leonurus L., Pogostemon Desf., Rosmarinus L., and Scutella L.) to E. stauntonii was 9.05% (45 primers). Among the 45 transferable markers, 10 markers revealed relatively high polymorphism in E. stauntonii. The genetic variation among 825 individuals from 18 natural populations of E. stauntonii in Hebei Province of China was analyzed using the 10 polymorphic SSR markers. On the basis of the SSR data, the average number of alleles (N A), expected heterozygosity (H E), and Shannon's information index (I) of the 10 primers pairs were 7.000, 0.478, and 0.688, respectively. Lower gene flow (N m = 1.252) and high genetic differentiation (F st = 0.181) were detected in the populations. Analysis of molecular variance (AMOVA) revealed that most of the variation (81.47%) was within the populations. Integrating the results of STRUCTURE, UPGMA (Unweighted Pair Group Method with Arithmetic Mean) clustering, and principal coordinate analysis, the 825 samples were grouped into two clusters associated with geographical provenance (southwestern and northeastern regions), which was consistent with the results of a Mantel test (r = 0.56, p < 0.001). Overall, SSR markers developed in related genera were effective to study the genetic structure and genetic diversity in geographical populations of E. stauntonii. The results provide a theoretical basis for conservation of genetic resources, genetic improvement, and construction of a core collection for E. stauntonii.
Collapse
Affiliation(s)
- Chenxing Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Chunfeng Jia
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding, China
| | - Xinru Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Hanqing Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Lu Hou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Meng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Binbin Cui
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding, China
| | - Yingyue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Kim JM, Lyu JI, Kim DG, Hung NN, Ryu J, Kim JB, Ahn JW, Ha BK, Kwon SJ. Analysis of genetic diversity and relationships of Perilla frutescens using novel EST-SSR markers derived from transcriptome between wild-type and mutant Perilla. Mol Biol Rep 2021; 48:6387-6400. [PMID: 34426904 DOI: 10.1007/s11033-021-06639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Perilla frutescens (Lamiaceae) is distributed in East Asia and is classified into var. frutescens and crispa. P. frutescens is multipurpose crop for human health because of a variety of secondary metabolites such as phenolic compound and essential oil. However, a lack of genetic information has hindered the development and utilization of Perilla genotypes. METHODS AND RESULTS This study was performed to develop expressed sequence tag-simple sequence repeat (EST-SSR) markers from P. frutescens var. crispa (wild type) and Antisperill (a mutant cultivar) and used them to assess the genetic diversity of, and relationships among, 94 P. frutescens genotypes. We obtained 65 Gb of sequence data comprising 632,970 transcripts by de novo RNA-sequencing. Of the 14,780 common SSRs, 102 polymorphic EST-SSRs were selected using in silico polymerase chain reaction (PCR). Overall, successful amplification from 58 EST-SSRs markers revealed remarkable genetic diversity and relationships among 94 P. frutescens genotypes. In total, 268 alleles were identified, with an average of 4.62 alleles per locus (range 2-11 alleles/locus). The average polymorphism information content (PIC) value was 0.50 (range 0.04-0.86). In phylogenetic and population structure analyses, the genotypes formed two major groups: Group I (var. crispa) and Group II (var. frutescens). CONCLUSION This results suggest that 58 novel EST-SSR markers derived from wild-type cultivar (var. crispa) and its mutant cultivar (Antisperill) have potential uses for population genetics and recombinant inbred line mapping analyses, which will provide comprehensive insights into the genetic diversity and relationship of P. frutescens.
Collapse
Affiliation(s)
- Jung Min Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea.,Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Jae Il Lyu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Dong-Gun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea.,Department of Life-Resources, Graduate School, Sunchon National University, Suncheon, 57922, Korea
| | - Nguyen Ngoc Hung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea.,Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Jaihyunk Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Bo-Keun Ha
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea.
| | - Soon-Jae Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea.
| |
Collapse
|
5
|
Zheng YF, Li DY, Sun J, Cheng JM, Chai C, Zhang L, Peng GP. Comprehensive Comparison of Two Color Varieties of Perillae Folium Using Rapid Resolution Liquid Chromatography Coupled with Quadruple-Time-of-Flight Mass Spectrometry (RRLC-Q/TOF-MS)-Based Metabolic Profile and in Vivo/ in Vitro Anti-Oxidative Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14684-14697. [PMID: 33237758 DOI: 10.1021/acs.jafc.0c05407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Perillae Folium (PF), which is extensively used as a dietary vegetable and medicinal herb, contains two varietal forms corresponding to purple perilla leaf (Perilla frutescens var. crispa) and green perilla leaf (Perilla frutescens var. frutescens). However, the components and efficacy of different PF varieties remain underexplored so far. In the present work, a nontargeted rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q/TOF-MS)-based metabolomics approach was developed to investigate the difference in the chemical compositions between green PF and purple PF. A total of 71 compounds were identified or tentatively identified, among which 7 phenolic acids, 10 flavonoids, and 9 anthocyanins were characterized as differential metabolites. In addition, heatmap visualization and ultraperformance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UPLC-TQ-MS/MS)-based quantitative analysis revealed that flavonoids and anthocyanins especially had higher contents in purple PF. Furthermore, the anti-oxidative activities of two varietal PFs were evaluated in vivo zebrafish and in vitro human umbilical vein endothelial cells (HUVECs). The results showed that the purple PF had more pronounced anti-oxidative activities than did the green PF, which may be due to the presence of anthocyanins and a higher concentration of flavonoids in its phytochemical profile. The outcome of the present study is expected to provide useful insight on the comprehensive utilization of a PF resource.
Collapse
Affiliation(s)
- Yun-Feng Zheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Dan-Yang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Jie Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Jian-Ming Cheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Chuan Chai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Li Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Guo-Ping Peng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210046, China
| |
Collapse
|
6
|
Assessment of genetic diversity and population structure among a collection of Korean Perilla germplasms based on SSR markers. Genes Genomics 2020; 42:1419-1430. [PMID: 33113112 DOI: 10.1007/s13258-020-01013-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Information on the genetic variation of genetic resource collections is very important for both the conservation and utilization of crop germplasms in genebanks. Var. frutescens of Perilla crop is extensively cultivated in South Korea as both an oil crop and a vegetable crop. OBJECTIVES We used SSR markers to evaluate the genetic diversity, genetic relationships, and population structure of 155 accessions of var. frutescens that have been selected as genetic resources for the development of leaf vegetable cultivars and preserved in the RDA-Genebank collection from South Korea. METHODS A total of 155 accessions of var. frutescens of Perilla crop collected in South Korea were obtained from the RDA-Genebank of the Republic of Korea. We selected 20 SSR markers representing the polymorphism of and adequately amplifying all the Perilla accessions. RESULTS The average GD and PIC values were 0.642 and 0.592, respectively, with ranges of 0.244-0.935 and 0.232- 0.931. The genetic variability in the southern region of South Korea was higher than that in the central region. The clustering patterns were not clearly distinguished between the accessions of var. frutescens from the central and southern regions of South Korea. CONCLUSION These results regarding the genetic diversity and population structure of the 155 accessions of var. frutescens of South Korea provide useful information for understanding the genetic variability of this crop and selecting and managing core germplasm sets in the RDA-Genebank of the Republic of Korea.
Collapse
|
7
|
Sa KJ, Lim SE, Choi IY, Park KC, Lee JK. Development and Characterization of New Microsatellite Markers for <i>Perilla frutescens</i> (L.) Britton. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/ajps.2019.109115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Ma SJ, Sa KJ, Hong TK, Lee JK. Genetic diversity and population structure analysis in Perilla crop and their weedy types from northern and southern areas of China based on simple sequence repeat (SSRs). Genes Genomics 2018; 41:267-281. [PMID: 30426456 DOI: 10.1007/s13258-018-0756-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Identification of genetic variation is an essential ability for the long-term success of breeding programs and maximizes the use of germplasm resources. In East Asia, China has a long history of the cultivation of Perilla crop, but there has been little research on the genetic diversity and genetic relationships among accessions of Perilla crop and their weedy types. OBJECTIVES To better understand the genetic variations of the cultivated and weedy types of Perilla crop in China, the 91 accessions were evaluated for genetic diversity by 21 simple sequence repeat (SSR) markers. METHODS SSR amplifications were conducted in a total volume of 20 µL, consisting of 20 ng genomic DNA, 1X PCR buffer, 0.5 µM forward and reverse primers, 0.2 mM dNTPs, and 1 U Taq polymerase. Power Marker version 3.25 was applied to obtain the information on the number of alleles, allele frequency, major allele frequency, gene diversity (GD), and polymorphic information content (PIC). The similarity matrix was used to construct an unweighted pair group method with arithmetic mean dendrogram by the application of SAHN-Clustering from NTSYS-pc.V.2.1. RESULTS A total of 147 alleles were identified with an average of 7 alleles per locus. The average values of PIC and GD were 0.577 and 0.537, respectively. The genetic diversity level of accessions from Northern China was lower than accessions from Southern China. The genetic diversity level and PIC values for accessions of var. crispa were the highest. For accessions of cultivated var. frutescens, genetic diversity in Southern China was higher than that in Northern China. CONCLUSION Most cultivated Perilla accessions were clearly separated from weedy Perilla accessions, but there was no clear geographic structure between cultivated Perilla crop and weedy types based on their regional distribution. This study demonstrated the utility of SSR analysis for performing genetic and population analysis of cultivated and weedy types of Perilla accessions in China.
Collapse
Affiliation(s)
- Shi Jun Ma
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea.,School of Life Sciences, Shandong University, No.72 Binhai Road, Jimo District, Qingdao, 266237, P.R. China
| | - Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Tak-Ki Hong
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
9
|
Sa KJ, Choi IY, Park KC, Lee JK. Genetic diversity and population structure among accessions of Perilla frutescens (L.) Britton in East Asia using new developed microsatellite markers. Genes Genomics 2018; 40:1319-1329. [PMID: 30105737 DOI: 10.1007/s13258-018-0727-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/08/2018] [Indexed: 11/26/2022]
Abstract
SSRs were successfully isolated from the Perilla crop in our current study, and used to analyze Perilla accessions from East Asia. Analyses of the clear genetic diversity and relationship for Perilla crop still remain insufficient. In this study, 40 new simple sequence repeat (SSR) primer sets were developed from RNA sequences using transcriptome analysis. These new SSR markers were applied to analyze the diversity, relationships, and population structure among 35 accessions of the two cultivated types of Perilla crop and their weedy types. A total of 220 alleles were identified at all loci, with an average of 5.5 alleles per locus and a range between 2 and 10 alleles per locus. The MAF (major allele frequency) per locus varied from 0.229 to 0.943, with an average of 0.466. The average polymorphic information content (PIC) value was 0.603, ranging from 0.102 to 0.837. The genetic diversity (GD) ranged from 0.108 to 0.854, with an average of 0.654. Based on population structure analysis, all accessions were divided into three groups: Group I, Group II and the admixed group. This study demonstrated the utility of new SSR analysis for the study of genetic diversity and population structure among 35 Perilla accessions. The GD of each locus for accessions of cultivated var. frutescens, weedy var. frutescens, cultivated var. crispa, and weedy var. crispa were 0.415, 0.606, 0.308, and 0.480, respectively. Both weedy accessions exhibited higher GD and PIC values than their cultivated types in East Asia. The new SSR primers of Perilla species reported in this study may provide potential genetic markers for population genetics to enhance our understanding of the genetic diversity, genetic relationship and population structure of the cultivated and weedy types of P. frutescens in East Asia. In addition, new Perilla SSR primers developed from RNA-seq can be used in the future for cultivar identification, conservation of Perilla germplasm resources, genome mapping and tagging of important genes/QTLs for Perilla breeding programs.
Collapse
Affiliation(s)
- Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|