1
|
Toral López J, Gómez Martinez S, Rivera Vega MDR, Hernández-Zamora E, Cuevas Covarrubias S, Ibarra Castrejón BA, González Huerta LM. New Genetic Variants of RUNX2 in Mexican Families Cause Cleidocranial Dysplasia. BIOLOGY 2024; 13:173. [PMID: 38534443 DOI: 10.3390/biology13030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant skeletal dysplasia characterized by persistent open skull sutures with bulging calvaria, hypoplasia, or aplasia of clavicles permitting abnormal opposition of the shoulders; wide public symphysis; short middle phalanx of the fifth fingers; and vertebral, craniofacial, and dental anomalies. It is a rare disease, with a prevalence of 1-9/1,000,000, high penetrance, and variable expression. The gene responsible for CCD is the Runt-related transcription factor 2 (RUNX2) gene. We characterize the clinical, genetic, and bioinformatic results of four CCD cases: two cases within Mexican families with six affected members, nine asymptomatic individuals, and two sporadic cases with CCD, with one hundred healthy controls. Genomic DNA analyses of the RUNX2 gene were performed for Sanger sequencing. Bioinformatics tools were used to predict the function, stability, and structural changes of the mutated RUNX2 proteins. Three novel heterozygous mutations (c.651_652delTA; c.538_539delinsCA; c.662T>A) and a previously reported mutation (c.674G>A) were detected. In silico analysis showed that all mutations had functional, stability-related, and structural alterations in the RUNX2 protein. Our results show novel mutations that enrich the pool of RUNX2 gene mutations with CCD. Moreover, the proband 1 presented clinical data not previously reported that could represent an expanded phenotype of severe expression.
Collapse
Affiliation(s)
- Jaime Toral López
- Department of Medical Genetics, Centro Médico Ecatepec ISSEMYM, Ecatepec 55000, México State, Mexico
| | - Sandra Gómez Martinez
- Servicio de Genética, Hospital General de México "Eduardo Liceaga" (HGM), México City 06720, Mexico
| | | | - Edgar Hernández-Zamora
- Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México City 14389, Mexico
| | | | | | | |
Collapse
|
2
|
Dalle Carbonare L, Antoniazzi F, Gandini A, Orsi S, Bertacco J, Li Vigni V, Minoia A, Griggio F, Perduca M, Mottes M, Valenti MT. Two Novel C-Terminus RUNX2 Mutations in Two Cleidocranial Dysplasia (CCD) Patients Impairing p53 Expression. Int J Mol Sci 2021; 22:ijms221910336. [PMID: 34638677 PMCID: PMC8508986 DOI: 10.3390/ijms221910336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Cleidocranial dysplasia (CCD), a dominantly inherited skeletal disease, is characterized by a variable phenotype ranging from dental alterations to severe skeletal defects. Either de novo or inherited mutations in the RUNX2 gene have been identified in most CCD patients. Transcription factor RUNX2, the osteogenic master gene, plays a central role in the commitment of mesenchymal stem cells to osteoblast lineage. With the aim to analyse the effects of RUNX2 mutations in CCD patients, we investigated RUNX2 gene expression and the osteogenic potential of two CCD patients' cells. In addition, with the aim to better understand how RUNX2 mutations interfere with osteogenic differentiation, we performed string analyses to identify proteins interacting with RUNX2 and analysed p53 expression levels. Our findings demonstrated for the first time that, in addition to the alteration of downstream gene expression, RUNX2 mutations impair p53 expression affecting osteogenic maturation. In conclusion, the present work provides new insights into the role of RUNX2 mutations in CCD patients and suggests that an in-depth analysis of the RUNX2-associated gene network may contribute to better understand the complex molecular and phenotypic alterations in mutant subjects.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
| | - Franco Antoniazzi
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37100 Verona, Italy; (F.A.); (A.G.)
| | - Alberto Gandini
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37100 Verona, Italy; (F.A.); (A.G.)
| | - Silvia Orsi
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
| | - Jessica Bertacco
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy;
| | - Veronica Li Vigni
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
| | - Arianna Minoia
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
| | - Francesca Griggio
- Centro Piattaforme Tecnologiche, University of Verona, 37100 Verona, Italy;
| | - Massimiliano Perduca
- Biocrystallography Lab, Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy;
| | - Maria Teresa Valenti
- Department of Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (S.O.); (J.B.); (V.L.V.); (A.M.)
- Correspondence: ; Tel.: +39-045-812-8450
| |
Collapse
|
3
|
Berkay EG, Elkanova L, Kalaycı T, Uludağ Alkaya D, Altunoğlu U, Cefle K, Mıhçı E, Nur B, Taşdelen E, Bayramoğlu Z, Karaman V, Toksoy G, Güneş N, Öztürk Ş, Palandüz Ş, Kayserili H, Tüysüz B, Uyguner ZO. Skeletal and molecular findings in 51 Cleidocranial dysplasia patients from Turkey. Am J Med Genet A 2021; 185:2488-2495. [PMID: 33987976 DOI: 10.1002/ajmg.a.62261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 04/04/2021] [Accepted: 04/22/2021] [Indexed: 11/07/2022]
Abstract
Loss or decrease of function in runt-related transcription factor 2 encoded by RUNX2 is known to cause a rare autosomal-dominant skeletal disorder, cleidocranial dysplasia (CCD). Clinical spectrum and genetic findings in 51 CCD patients from 30 unrelated families are herein presented. In a majority of the patients, facial abnormalities, such as delayed fontanel closure (89%), parietal and frontal bossing (80%), metopic groove (77%), midface hypoplasia (94%), and abnormal mobility of shoulders (90%), were recorded following clinical examination. In approximately one-half of the subjects, wormian bone (51%), short stature (43%), bell-shaped thorax (42%), wide pubic symphysis (50%), hypoplastic iliac wing (59%), and chef's hat sign (44%) presented in available radiological examinations. Scoliosis was identified in 28% of the patients. Investigation of RUNX2 revealed small sequence alterations in 90% and gross deletions in 10% of the patients; collectively, 23 variants including 11 novel changes (c.29_30insT, c.203delAinsCG, c.423 + 2delT, c.443_454delTACCAGATGGGAinsG, c.505C > T, c.594_595delCTinsG, c.636_637insC, c.685 + 5G > A, c.1088G > T, c.1281delC, Exon 6-9 deletion) presented high allelic heterogeneity. Novel c.29_30insT is unique in affecting the P1-driven long isoform of RUNX2, which is expected to disrupt the N-terminal region of RUNX2; this was shown in two unrelated phenotypically discordant patients. The clinical findings highlighted mild intra-familial genotype-phenotype correlation in our CCD cohort.
Collapse
Affiliation(s)
- Ezgi Gizem Berkay
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Leyla Elkanova
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Istanbul, Turkey
| | - Tuğba Kalaycı
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Istanbul, Turkey
| | - Umut Altunoğlu
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,Medical Genetics Department, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Kıvanç Cefle
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ercan Mıhçı
- Division of Medical Genetics, Department of Pediatrics, Akdeniz University Medical School, Antalya, Turkey
| | - Banu Nur
- Division of Medical Genetics, Department of Pediatrics, Akdeniz University Medical School, Antalya, Turkey
| | - Elifcan Taşdelen
- Department of Medical Genetics, School of Medicine, Ankara University, Ankara, Turkey
| | - Zuhal Bayramoğlu
- Department of Radiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Volkan Karaman
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Güven Toksoy
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Nilay Güneş
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Istanbul, Turkey
| | - Şükrü Öztürk
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Şükrü Palandüz
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Hülya Kayserili
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,Medical Genetics Department, Koç University School of Medicine (KUSoM), Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, Istanbul, Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Delayed Eruption of Permanent Dentition and Maxillary Contraction in Patients with Cleidocranial Dysplasia: Review and Report of a Family. Int J Dent 2018; 2018:6591414. [PMID: 30123273 PMCID: PMC6079435 DOI: 10.1155/2018/6591414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/20/2018] [Indexed: 11/18/2022] Open
Abstract
Introduction Cleidocranial dysplasia (CCD) is an inherited disease caused by mutations in the RUNX2 gene on chromosome 6p21. This pathology, autosomal dominant or caused by a spontaneous genetic mutation, is present in one in one million individuals, with complete penetrance and widely variable expressivity. Aim To identify the incidence of these clinical findings in the report of the literature by means of PubMed interface from 2002 to 2015, with the related keywords. The report of local patients presents a clinical example, related to the therapeutic approach. Results and Discussions The PubMed research resulted in 122 articles. All the typical signs were reported in all presented cases. The maxilla was hypoplastic in 94% of the patients. Missing of permanent teeth was found in two cases: one case presented a class II jaw relationship, instead of class III malocclusion. Similar findings were present in our cohort. Conclusion CCD is challenging for both the dental team and the patient. The treatment requires a multidisciplinary approach. Further studies are required to better understand the cause of this disease. According to this review, a multistep approach enhances the possibilities to achieve the recovery of the most possible number of teeth, as such to obtain a good occlusion and a better aesthetic.
Collapse
|
5
|
Jung YJ, Bae HS, Ryoo HM, Baek SH. A novel RUNX2 mutation in exon 8, G462X, in a patient with Cleidocranial Dysplasia. J Cell Biochem 2017; 119:1152-1162. [PMID: 28703881 DOI: 10.1002/jcb.26283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022]
Abstract
To identify a novel mutation of Runx2 gene in Cleidocranial Dysplasia (CCD) patients and to characterize the functional consequences of this mutation. The subjects consisted of 12 Korean CCD patients. After oral epithelial cells were collected using a mouthwash technique, genomic DNA was extracted. Screening for Runx2 mutation was performed using direct sequencing of polymerase chain reaction (PCR) products for exons 1-8. Restriction fragment length polymorphism (RFLP) analysis was performed to confirm the novel mutation. For functional studies, we performed luciferase assay for Runx2 transacting activity, cyclohexamide chase assay for Runx2 protein stability, real-time PCR for mRNA level of Runx2 downstream bone marker genes, and alkaline phosphatase (ALP) staining assay in mesenchymal stem cells for osteoblast differentiation. Of the 12 patients, seven showed Runx2 mutations reported previously and four showed no mutation. A novel mutation, G462X in exon 8, which was located in the C-terminus of proline/serine/threonine-rich (PST) domain, was found in one patient. In the luciferase assay, Runx2 transacting activity was decreased in Runx2-G462X transfected cells. In the cyclohexamide chase assay, Runx2-G462X mutation reduced the stability of Runx2 protein. Expression of the bone marker genes (osteocalcin, ALP, Type I collagen αI, matrix metalloproteinase-13, bone sialoprotein, and osteopontin) decreased in G462X-transfected cells. In the ALP staining assay, osteoblast differentiation was reduced in Runx2-G462X overexpressed cell. The G462X mutation might reduce the Runx2 transacting activity, lower the protein stability, downgrade the expression of bone marker genes, and eventually diminish osteoblast differentiation in CCD patients.
Collapse
Affiliation(s)
- Yu-Jin Jung
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Han-Sol Bae
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hak Baek
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
|
7
|
Lee C, Jung HS, Baek JA, Leem DH, Ko SO. Manifestation and treatment in a cleidocranial dysplasia patient with a RUNX2 (T420I) mutation. Maxillofac Plast Reconstr Surg 2015; 37:41. [PMID: 26594640 PMCID: PMC4643116 DOI: 10.1186/s40902-015-0042-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022] Open
Abstract
Cleidocranial dysplasia is an autosomal dominant heritable skeletal disorder. The characteristic features of cleidocranial dysplasia (CCD) may include hypoplasia of the clavicle, delayed closure of frontanelles, late tooth eruption, and other skeletal disorders. This case report describes clinical and radiographic manifestations at the age of 11 and 29 of a CCD patient, investigates the mutation of core-binding factor A1 (CBFA1) based on gene analysis, and illustrates successful oral reconstruction with fixed prosthesis and dental implant after the extraction of multiple teeth.
Collapse
Affiliation(s)
- Chaky Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonbuk National University, 664-14 Duckjindong, Chonju, Chonbuk 561-756 South Korea
| | - Hee-Sup Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonbuk National University, 664-14 Duckjindong, Chonju, Chonbuk 561-756 South Korea
| | - Jin-A Baek
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonbuk National University, 664-14 Duckjindong, Chonju, Chonbuk 561-756 South Korea
| | - Dae Ho Leem
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonbuk National University, 664-14 Duckjindong, Chonju, Chonbuk 561-756 South Korea
| | - Seung-O Ko
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonbuk National University, 664-14 Duckjindong, Chonju, Chonbuk 561-756 South Korea
| |
Collapse
|
8
|
Huang Y, Song Y, Zhang C, Chen G, Wang S, Bian Z. NovelRUNX2frameshift mutations in Chinese patients with cleidocranial dysplasia. Eur J Oral Sci 2013; 121:142-7. [PMID: 23659235 DOI: 10.1111/eos.12048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Yanyu Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - Yaling Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - Chenzheng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| | - Guoxin Chen
- Department of Orthodontics; Hubei-MOST KLOS & KLOBM; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Shihua Wang
- Department of Stomatology; People's Hospital of Shayang; Jingmen China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
9
|
Papamentzelopoulou M, Mavrogianni D, Dinopoulou V, Theofanakis H, Malamas F, Marinopoulos S, Bletsa R, Anagnostou E, Kallianidis K, Loutradis D. Detection of RUNX2 gene expression in cumulus cells in women undergoing controlled ovarian stimulation. Reprod Biol Endocrinol 2012; 10. [PMID: 23186169 PMCID: PMC3517744 DOI: 10.1186/1477-7827-10-99] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RUNX2 is a transcription factor, whose expression has been recently identified in the mouse ovary. Regulation of RUNX2 expression and its function in the human ovary have not been determined yet. The aim of the present study is the investigation of the possible correlation between RUNX2 gene expression in cumulus cells and controlled ovarian stimulation and pregnancy outcomes after ART treatment. METHODS A total of 41 patients undergoing ICSI treatment for male factor infertility were enrolled into a specific ART program, during which cumulus cells were collected. The expression of RUNX2 gene in cumulus cells was examined by real-time PCR. RESULTS Concerning RUNX2 gene expression, 12 out of 41 women were detected with RUNX2 expression, with ratios ranging from 0.84 to 1.00, while 28 out of 41 women had no expression (ratio = 0). Only 1 woman presented a weak RUNX2 gene expression (ratio = 0.52). From 8 women that proceeded to pregnancy, 7 of them did not express RUNX2 gene in cumulus cells, while one was the woman with weak gene expression that also achieved pregnancy. The group of women without RUNX2 expression presented higher number of follicles (p = 0.013), higher number of retrieved oocytes (p = 0.016), higher basal LH serum levels (p = 0.016) and higher peak estradiol levels (p = 0.013), while the number of fertilized oocytes differed marginally between the two groups (p = 0.089). Moreover, RUNX2 expression was negatively associated with LH levels (OR = 0.22, p = 0.021) and E2 levels (OR = 0.25, p = 0.026). CONCLUSIONS Consequently, based on the preliminary findings of the present pilot study a potential inhibitory mechanism of RUNX2 gene is observed in the ovary when high mRNA levels are detected, suggesting that RUNX2 could possibly be used as a candidate genetic marker in the monitoring of the outcome of an ART treatment.
Collapse
Affiliation(s)
- Myrto Papamentzelopoulou
- Division of Human Reproduction, IVF Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, Athens University Medical School, Athens, Greece
| | - Despina Mavrogianni
- Division of Human Reproduction, IVF Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, Athens University Medical School, Athens, Greece
| | - Vasiliki Dinopoulou
- Division of Human Reproduction, IVF Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, Athens University Medical School, Athens, Greece
| | - Haralampos Theofanakis
- Division of Human Reproduction, IVF Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, Athens University Medical School, Athens, Greece
| | - Fotodotis Malamas
- Division of Human Reproduction, IVF Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, Athens University Medical School, Athens, Greece
| | - Spyros Marinopoulos
- Division of Human Reproduction, IVF Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, Athens University Medical School, Athens, Greece
| | - Ritsa Bletsa
- Division of Human Reproduction, IVF Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, Athens University Medical School, Athens, Greece
| | - Elli Anagnostou
- Division of Human Reproduction, IVF Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, Athens University Medical School, Athens, Greece
| | - Kostas Kallianidis
- Division of Human Reproduction, IVF Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, Athens University Medical School, Athens, Greece
| | - Dimitris Loutradis
- Division of Human Reproduction, IVF Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, Athens University Medical School, Athens, Greece
| |
Collapse
|
10
|
Wang GX, Wang DW, Zhao JS, Wang SF, Sun RP. A novel TSC1 mutation (c.1964delA) in a Chinese patient with tuberous sclerosis complex. GENETICS AND MOLECULAR RESEARCH 2011; 10:107-13. [PMID: 21268779 DOI: 10.4238/vol10-1gmr977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tuberous sclerosis complex is an autosomal-dominant heritable disease caused by mutations in the TSC1 and TSC2 genes. We studied a Chinese patient with sporadic tuberous sclerosis complex. The clinical features of this patient included epilepsy, hypomelanotic macules and angiofibromas on his back; a cranial CT scan showed subependymal nodules along the lateral walls of the lateral ventricles. The TSC1 and TSC2 genes were studied by PCR and direct sequencing of the entire coding region and exon-intron boundaries of these genes. A novel deletion mutation (c.1964delA) in the TSC1 gene exon 15 was identified, which was not present in his parents or 100 unrelated normal controls. This is the first report of this c.1964delA mutation of the TSC1 gene, associated with tuberous sclerosis complex, expanding the spectrum of TSC1 mutations that cause this disease.
Collapse
Affiliation(s)
- G-X Wang
- Department of Paediatrics, Qilu Hospital of Shandong University, Jinan, P.R. China
| | | | | | | | | |
Collapse
|
11
|
Xuan D, Sun X, Yan Y, Xie B, Xu P, Zhang J. Effect of cleidocranial dysplasia-related novel mutation of RUNX2 on characteristics of dental pulp cells and tooth development. J Cell Biochem 2010; 111:1473-81. [DOI: 10.1002/jcb.22875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|