1
|
Ghafari C, Brassart N, Delmotte P, Brunner P, Dghoughi S, Carlier S. Bioresorbable Magnesium-Based Stent: Real-World Clinical Experience and Feasibility of Follow-Up by Coronary Computed Tomography: A New Window to Look at New Scaffolds. Biomedicines 2023; 11:biomedicines11041150. [PMID: 37189769 DOI: 10.3390/biomedicines11041150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
(1) Background: The diagnostic accuracy of coronary computed tomography angiography (CCTA) for coronary artery disease (CAD) has greatly improved so CCTA represents a transition in the care of patients suffering from CAD. Magnesium-based bioresorbable stents (Mg-BRS) secure acute percutaneous coronary intervention (PCI) results without leaving, in the long term, a metallic caging effect. The purpose of this real-world study was to assess clinical and CCTA medium- and long-term follow-up of all our patients with implanted Mg-BRS. (2) Methods: The patency of 52 Mg-BRS implanted in 44 patients with de novo lesions (24 of which had acute coronary syndrome (ACS)) was evaluated by CCTA and compared to quantitative coronary angiography (QCA) post-implantation. (3) Results: ten events including four deaths occurred during a median follow-up of 48 months. CCTA was interpretable and in-stent measurements were successful at follow-up without being hindered by the stent strut's "blooming effect". Minimal in-stent diameters on CCTA were found to be 1.03 ± 0.60 mm smaller than the expected diameter after post-dilation on implantation (p < 0.05), a difference not found in comparing CCTA and QCA. (4) Conclusions: CCTA follow-up of implanted Mg-BRS is fully interpretable and we confirm the long-term Mg-BRS safety profile.
Collapse
Affiliation(s)
- Chadi Ghafari
- Department of Cardiology, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
| | | | | | | | | | - Stéphane Carlier
- Department of Cardiology, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
- CHU Ambroise Paré, 7000 Mons, Belgium
| |
Collapse
|
2
|
Wu X, Wu S, Kawashima H, Hara H, Ono M, Gao C, Wang R, Lunardi M, Sharif F, Wijns W, Serruys PW, Onuma Y. Current perspectives on bioresorbable scaffolds in coronary intervention and other fields. Expert Rev Med Devices 2021; 18:351-365. [PMID: 33739213 DOI: 10.1080/17434440.2021.1904894] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The first-generation bioresorbable scaffolds (BRSs) had a large strut profile to compensate for the insufficient radial strength of bioresorbable polymer materials, resulting in higher scaffold thrombosis rates than conventional drug-eluting stents. To improve the clinical safety and efficacy, the new generation BRSs have been improved by optimal structure design, post-processing of bioresorbable polymer materials, or altering bioresorbable metallic alloys.Areas covered: This review summarizes the lessons learned from the first-generation BRS, updates the clinical outcomes of trials evaluating ABSORB bioresorbable vascular scaffold at long-term and bioresorbable metallic alloy-based devices, and examines recent outcomes of BRS treated in STEMI patients. This review also provides an overview of the current clinical data of seven BRSs manufactured in Asia, and of the BRSs extended application in other clinical arenas.Expert opinion: Drawbacks of the first-generation BRSs need to be addressed by the next generation of these stents with novel materials and technologies. Clinical research, including randomized controlled trials, are required to further evaluate BRSs application in coronary artery disease. The encouraging results of BRSs innovation applied in the peripheral arteries and gastrointestinal tracts support other potential clinical applications of BRS technology.
Collapse
Affiliation(s)
- Xinlei Wu
- Institute of Cardiovascular Development and Translational Medicine, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Sijing Wu
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Beijing Anzhen Hospital, Beijing, China
| | - Hideyuki Kawashima
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Hironori Hara
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Masafumi Ono
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Chao Gao
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Xijing Hospital, Xi'an, China
| | - Rutao Wang
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Xijing Hospital, Xi'an, China
| | - Mattia Lunardi
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Faisal Sharif
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - William Wijns
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,National Heart & Lung Institute, Imperial College London, London, UK
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| |
Collapse
|