Farooq V, Gomez-Lara J, Brugaletta S, Gogas BD, Garcìa-Garcìa HM, Onuma Y, van Geuns RJ, Bartorelli A, Whitbourn R, Abizaid A, Serruys PW. Proximal and distal maximal luminal diameters as a guide to appropriate deployment of the ABSORB everolimus-eluting bioresorbable vascular scaffold: a sub-study of the ABSORB Cohort B and the on-going ABSORB EXTEND Single Arm Study.
Catheter Cardiovasc Interv 2011;
79:880-8. [PMID:
22514149 DOI:
10.1002/ccd.23177]
[Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/27/2011] [Indexed: 11/10/2022]
Abstract
OBJECTIVES
Due to the limited distensibility of the everolimus-eluting bioresorbable vascular scaffold (ABSORB) compared to metallic platform stents, quantitative coronary arteriography (QCA) is a mandatory requirement for ABSORB deployment in the on-going ABSORB EXTEND Single-Arm Study. Visual assessment of vessel size in the ABSORB Cohort B study often lead to under and over-sizing of the 3 mm ABSORB in coronary vessels (recommended range of the vessel diameter ≥ 2.5 mm and ≤ 3.3 mm), with an increased risk of spontaneous incomplete scaffold apposition post ABSORB deployment. We report whether mandatory QCA assessment of vessel size pre-implantation, utilizing the maximal luminal diameter (Dmax) and established interpolated reference vessel diameter (RVD) measurements, has improved device/vessel sizing.
METHODS
Pre-implantation post-hoc QCA analyses of all 101 patients from ABSORB Cohort B (102 lesions) and first consecutive 101 patients (108 lesions) from ABSORB EXTEND were undertaken by an independent core-laboratory; all patients had a 3 mm ABSORB implanted. Comparative analyses were performed.
RESULTS
Within ABSORB Cohort B, a greater number of over-sized vessels (> 3.3 mm) were identified utilizing the Dmax compared to the interpolated RVD (17 vessels, 16.7% vs. 3 vessels, 2.9%; P = 0.002). Comparative analyses demonstrated a greater number of appropriate vessel-size selection (75 vessels, 69.4% vs. 48 vessels, 47.1%; P = 0.001), a trend towards a reduction in implantation in small (< 2.5 mm) vessels (29 vessels, 26.9% vs. 40 vessels, 39.2%; P = 0.057) and a significant decrease in the implantation in large (> 3.3 mm) vessels (4 vessels, 3.7% vs. 17 vessels, 16.7%; P = 0.002) in ABSORB EXTEND. Bland-Altman plots suggested a good agreement between operator and core-laboratory calculated Dmax measurements.
CONCLUSIONS
The introduction of mandatory Dmax measurements of vessel size prior to ABSORB implantation significantly reduced the under-sizing of the 3.0 mm scaffold in large vessels validating the use of this technique in vessel sizing prior to ABSORB implantation.
Collapse