1
|
Fischell TA, Balmuri A, Agarwal S, Verhye S. Integrated Stent Delivery System: A Next Generation of Stent Delivery and Drug-Eluting Stent. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2019; 21:205-212. [PMID: 31101587 DOI: 10.1016/j.carrev.2019.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 10/26/2022]
Abstract
The SLENDER Integrated Delivery System (IDS™) is an 'all-in-one' fixed-wire coronary stenting device designed for direct stenting, precluding the need for conventional guidewires and predilatation balloons. It achieves ultra-low profiles (crossing profiles as low as 0.029″/0.737 mm), enabling the downsizing of catheters to facilitate transradial intervention in a large subsets of patients. The IDS represents the first advance in coronary stent delivery since the introduction of rapid-exchange stent delivery systems >20 years ago. SLENDER IDS has demonstrated non-inferiority compared with commercial DES, excellent long-term safety and a potentially more efficient approach to PCI where patient comfort is enhanced, procedures are streamlined, and resource consumption is reduced. This paper will summarize the novel features of this new stent delivery system and the early clinical data demonstrating safety and efficacy.
Collapse
Affiliation(s)
- Tim A Fischell
- Borgess Heart Institute and Western Michigan University, Kalamazoo, MI, USA.
| | - Abilash Balmuri
- Borgess Heart Institute and Western Michigan University, Kalamazoo, MI, USA
| | - Sourabh Agarwal
- Borgess Heart Institute and Western Michigan University, Kalamazoo, MI, USA
| | | |
Collapse
|
2
|
Zhu Y, Zhang H, Zhang Y, Wu H, Wei L, Zhou G, Zhang Y, Deng L, Cheng Y, Li M, Santos HA, Cui W. Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805452. [PMID: 30589125 DOI: 10.1002/adma.201805452] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/20/2018] [Indexed: 06/09/2023]
Abstract
Cerebrovascular disease involves various medical disorders that obstruct brain blood vessels or deteriorate cerebral circulation, resulting in ischemic or hemorrhagic stroke. Nowadays, platinum coils with or without biological modification have become routine embolization devices to reduce the risk of cerebral aneurysm bleeding. Additionally, many intracranial stents, flow diverters, and stent retrievers have been invented with uniquely designed structures. To accelerate the translation of these devices into clinical usage, an in-depth understanding of the mechanical and material performance of these metal-based devices is critical. However, considering the more distal location and tortuous anatomic characteristics of cerebral arteries, present devices still risk failing to arrive at target lesions. Consequently, more flexible endovascular devices and novel designs are under urgent demand to overcome the deficiencies of existing devices. Herein, the pros and cons of the current structural designs are discussed when these devices are applied to the treatment of diseases ranging broadly from hemorrhages to ischemic strokes, in order to encourage further development of such kind of devices and investigation of their use in the clinic. Moreover, novel biodegradable materials and drug elution techniques, and the design, safety, and efficacy of personalized devices for further clinical applications in cerebral vasculature are discussed.
Collapse
Affiliation(s)
- Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Hongbo Zhang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-20520, Finland
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku, FI-20520, Finland
| | - Yiran Zhang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Huayin Wu
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Liming Wei
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Gen Zhou
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Yuezhou Zhang
- Department of Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-20520, Finland
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku, FI-20520, Finland
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Minghua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
3
|
Verheye S. Evaluation of the Svelte Medical systems SLENDER IDS Sirolimus-eluting coronary stent-on-a-wire integrated delivery system for the treatment of coronary artery disease. Expert Rev Med Devices 2017; 14:669-683. [PMID: 28799426 DOI: 10.1080/17434440.2017.1364990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The SLENDER Integrated Delivery System (IDS™) is an 'all-in-one' fixed-wire coronary stenting device designed for direct stenting, precluding the need for conventional guidewires and predilatation balloons. It achieves ultra-low profiles (crossing profiles as low as 0.031" / 0.79), enabling the downsizing of catheters to facilitate TRI across wider subsets of patients. Areas covered: This paper aims to evaluate the SLENDER IDS for the treatment of coronary artery disease. Expert commentary: The system represents the first advance in coronary stent delivery since the introduction of rapid-exchange stent delivery systems more than 20 years ago. SLENDER IDS has demonstrated non-inferiority compared with commercial DES, excellent long-term safety and a potentially more efficient approach to PCI where patient comfort is enhanced, procedures are streamlined and resource consumption is reduced.
Collapse
Affiliation(s)
- Stefan Verheye
- a Department of Interventional Cardiology , Antwerp Cardiovascular Center ZNA Middelheim , Antwerp , Belgium
| |
Collapse
|
5
|
Bourantas CV, Serruys PW, Nakatani S, Zhang YJ, Farooq V, Diletti R, Ligthart J, Sheehy A, van Geuns RJM, McClean D, Chevalier B, Windecker S, Koolen J, Ormiston J, Whitbourn R, Rapoza R, Veldhof S, Onuma Y, Garcia-Garcia HM. Bioresorbable vascular scaffold treatment induces the formation of neointimal cap that seals the underlying plaque without compromising the luminal dimensions: a concept based on serial optical coherence tomography data. EUROINTERVENTION 2015; 11:746-56. [DOI: 10.4244/eijy14m10_06] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Gori T, Schulz E, Hink U, Wenzel P, Post F, Jabs A, Münzel T. Early outcome after implantation of Absorb bioresorbable drug-eluting scaffolds in patients with acute coronary syndromes. EUROINTERVENTION 2014; 9:1036-41. [PMID: 23999237 DOI: 10.4244/eijv9i9a176] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS The safety of BVS implantation in patients with a high risk for early thrombotic complications has not been studied. We report on the outcomes of patients with acute coronary syndromes (ACS) treated with bioresorbable, everolimus-eluting, vascular scaffolds (BVS). METHODS AND RESULTS 150 consecutive patients with ACS (194 lesions) treated with BVS between May 2012 and July 2013 were compared with a control group composed of 103 consecutive patients (129 lesions) who underwent everolimus drug-eluting stent (DES) implantation in the same time period. The incidence of major adverse cardiac events (MACE: death, non-fatal myocardial infarction, or reintervention) before discharge, at one month and six months was evaluated. Clinical characteristics and presentation were similar between groups. Procedural characteristics were also similar between groups, except for the use of glycoprotein IIb/IIIa inhibitors (p<0.01). Procedural success was obtained in all but two patients in the BVS group. In-hospital, 30-day and six-month MACE rates were similar between both groups (all p>0.5), with most complications occurring during the first ten days. Definite or probable in-stent/scaffold thrombosis occurred in two BVS patients and one DES patient during the index admission and it occurred in another patient in each group in the first month after BVS/DES implantation. In multivariate analysis, BVS utilisation did not influence the incidence of MACE (p>0.9). CONCLUSIONS BVS implantation for patients with ACS is safe, with outcomes comparable with those of drug-eluting metal stents.
Collapse
Affiliation(s)
- Tommaso Gori
- Department of Medicine II, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The introduction of percutaneous coronary intervention (PCI) in the late 1970s revolutionized the management of stable and unstable coronary artery disease, providing an effective, quick, safe, and increasingly widely available method for coronary revascularization for many patients. Rapid development in this field led to the introduction of a number of new technologies, including intracoronary stents that have resulted in improved efficacy and long-term safety. In this manuscript we review the experience with the 2 major available classes of stents (bare metal [BMS], drug-eluting [DES]) and describe the delivery systems for these stents. An evidence review of the large trial data comparing balloon angioplasty, BMS, and DES demonstrates the incremental advances over time, with the latest generation of DES achieving the lowest rates of restenosis, stent thrombosis, and recurrent myocardial infarction. In addition, we provide an overview of the latest developments in stent technology, including the introduction of bioresorbable stents and new stent delivery systems. These latest advances are hoped to further improve outcomes while reducing costs due to a reduction in the need for future procedures and hospitalizations due to recurrent coronary disease.
Collapse
Affiliation(s)
- Sameer D Sheth
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | | |
Collapse
|