1
|
Zhang L, Liao W, Chen S, Chen Y, Cheng P, Lu X, Ma Y. Towards a New 3Rs Era in the construction of 3D cell culture models simulating tumor microenvironment. Front Oncol 2023; 13:1146477. [PMID: 37077835 PMCID: PMC10106600 DOI: 10.3389/fonc.2023.1146477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Three-dimensional cell culture technology (3DCC) sits between two-dimensional cell culture (2DCC) and animal models and is widely used in oncology research. Compared to 2DCC, 3DCC allows cells to grow in a three-dimensional space, better simulating the in vivo growth environment of tumors, including hypoxia, nutrient concentration gradients, micro angiogenesis mimicism, and the interaction between tumor cells and the tumor microenvironment matrix. 3DCC has unparalleled advantages when compared to animal models, being more controllable, operable, and convenient. This review summarizes the comparison between 2DCC and 3DCC, as well as recent advances in different methods to obtain 3D models and their respective advantages and disadvantages.
Collapse
Affiliation(s)
- Long Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiqi Liao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shimin Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yukun Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pengrui Cheng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Grün C, Pfeifer J, Liebsch G, Gottwald E. O 2-sensitive microcavity arrays: A new platform for oxygen measurements in 3D cell cultures. Front Bioeng Biotechnol 2023; 11:1111316. [PMID: 36890915 PMCID: PMC9986295 DOI: 10.3389/fbioe.2023.1111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Oxygen concentration plays a crucial role in (3D) cell culture. However, the oxygen content in vitro is usually not comparable to the in vivo situation, which is partly due to the fact that most experiments are performed under ambient atmosphere supplemented with 5% CO2, which can lead to hyperoxia. Cultivation under physiological conditions is necessary, but also fails to have suitable measurement methods, especially in 3D cell culture. Current oxygen measurement methods rely on global oxygen measurements (dish or well) and can only be performed in 2D cultures. In this paper, we describe a system that allows the determination of oxygen in 3D cell culture, especially in the microenvironment of single spheroids/organoids. For this purpose, microthermoforming was used to generate microcavity arrays from oxygen-sensitive polymer films. In these oxygen-sensitive microcavity arrays (sensor arrays), spheroids cannot only be generated but also cultivated further. In initial experiments we could show that the system is able to perform mitochondrial stress tests in spheroid cultures to characterize mitochondrial respiration in 3D. Thus, with the help of sensor arrays, it is possible to determine oxygen label-free and in real-time in the immediate microenvironment of spheroid cultures for the first time.
Collapse
Affiliation(s)
- Christoph Grün
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jana Pfeifer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Eric Gottwald
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
3
|
Investigating Cancerous Exosomes’ Effects on CD8+ T-Cell IL-2 Production in a 3D Unidirectional Flow Bioreactor Using 3D Printed, RGD-Functionalized PLLA Scaffolds. J Funct Biomater 2022; 13:jfb13010030. [PMID: 35323230 PMCID: PMC8950614 DOI: 10.3390/jfb13010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Exosomes from cancer cells are implicated in cancer progression and metastasis, carrying immunosuppressive factors that limit the antitumor abilities of immune cells. The development of a real-time, 3D cell/scaffold construct flow perfusion system has been explored as a novel tool in the study of T-cells and exosomes from cancer cells. Exosomes from human lung cancer (H1299 and A549) cells were co-cultured in a unidirectional flow bioreactor with CD8+ T-cells immobilized onto 3D-printed RGD-functionalized poly(L-lactic) acid (PLLA) scaffolds and assessed for IL-2 production. The IL-2 production was investigated for a wide range of T-cell to exosome ratios. With the successful incorporation of the RGD binding motif onto the PLLA surface at controllable densities, CD8+ T-cells were successfully attached onto 2D disks and 3D printed porous PLLA scaffolds. T-cell attachment increased with increasing RGD surface density. The diameter of the attached T-cells was 7.2 ± 0.2 µm for RGD densities below 0.5 nmoles/mm2 but dropped to 5.1 ± 0.3 µm when the RGD density was 2 nmoles/mm2 due to overcrowding. The higher the number of cancer exosomes, the less the IL-2 production by the surface-attached T-cells. In 2D disks, the IL-2 production was silenced for T-cell to exosome ratios higher than 1:10 in static conditions. IL-2 production silencing in static 3D porous scaffolds required ratios higher than 1:20. The incorporation of flow resulted in moderate to significant T-cell detachment. The portions of T-cells retained on the 3D scaffolds after exposure for 4 h to 0.15 or 1.5 mL/min of perfusion flow were 89 ± 11% and 30 ± 8%, respectively. On 3D scaffolds and in the presence of flow at 0.15 ml/min, both H1299 and A549 cancerous exosomes significantly suppressed IL-2 production for T-cell to exosome ratios of 1:1000. The much higher level of exosomes needed to silence the IL-2 production from T-cells cultured under unidirectional flow, compared to static conditions, denotes the importance of the culturing conditions and the hydrodynamic environment, on the interactions between CD8+ T-cells and cancer exosomes.
Collapse
|
4
|
Dynamic in vitro models for tumor tissue engineering. Cancer Lett 2019; 449:178-185. [PMID: 30763717 DOI: 10.1016/j.canlet.2019.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 01/04/2023]
Abstract
Cancer research uses in vitro studies for controllable analysis of tumor behavior and preclinical testing of therapeutics. Shortcomings of basic cell culture systems in recreating in vivo interactions have driven the development of more efficient and biomimetic in vitro environments for cancer research. Assimilation of certain developments in tissue engineering will accelerate and improve the design of these environments. With the continual improvement of the tumor engineering field, the next step is towards macroscopic systems such as scaffold-supported, flow-perfused macroscale tumor bioreactors. Surface modifications of synthetic scaffolds allow for targeted cell adhesion and improved ECM development. Flow perfusion has emerged as means to expose cancerous tissues to critical biomechanical forces for tumor progression while simultaneously improving nutrient and waste transport. Macroscale perfusable systems allow for non-destructive real-time monitoring using biosensors capable of improving understanding of in vitro tumor development at reduced cost and waste. The combination of macroscale perfusable systems, surface-modified synthetic scaffolds, and non-destructive real-time monitoring will provide advanced platforms for in vitro modeling of tumor development, with broad applications in basic tumor research and preclinical drug development.
Collapse
|
5
|
LaBonia GJ, Ludwig KR, Mousseau CB, Hummon AB. iTRAQ Quantitative Proteomic Profiling and MALDI-MSI of Colon Cancer Spheroids Treated with Combination Chemotherapies in a 3D Printed Fluidic Device. Anal Chem 2018; 90:1423-1430. [PMID: 29227110 PMCID: PMC5820028 DOI: 10.1021/acs.analchem.7b04969] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For a patient with metastatic colorectal cancer there are limited clinical options aside from chemotherapy. Unfortunately, the development of new chemotherapeutics is a long and costly process. New methods are needed to identify promising drug candidates earlier in the drug development process. Most chemotherapies are administered to patients in combinations. Here, an in vitro platform is used to assess the penetration and metabolism of combination chemotherapies in three-dimensional colon cancer cell cultures, or spheroids. Colon carcinoma HCT 116 cells were cultured and grown into three-dimensional cell culture spheroids. These spheroids were then dosed with a common combination chemotherapy, FOLFIRI (folinic acid, 5-fluorouracil, and irinotecan) in a 3D printed fluidic device. This fluidic device allows for the dynamic treatment of spheroids across a semipermeable membrane. Following dosing, the spheroids were harvested for quantitative proteomic profiling to examine the effects of the combination chemotherapy on the colon cancer cells. Spheroids were also imaged to assess the spatial distribution of administered chemotherapeutics and metabolites with MALDI-imaging mass spectrometry. Following treatment, we observed penetration of folinic acid to the core of spheroids and metabolism of the drug in the outer proliferating region of the spheroid. Proteomic changes identified included an enrichment of several cancer-associated pathways. This innovative dosing device, along with the proteomic evaluation with iTRAQ-MS/MS, provides a robust platform that could have a transformative impact on the preclinical evaluation of drug candidates. This system is a high-throughput and cost-effective approach to examine novel drugs and drug combinations prior to animal testing.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Cell Culture Techniques/methods
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/metabolism
- Drug Screening Assays, Antitumor/instrumentation
- Drug Screening Assays, Antitumor/methods
- Equipment Design
- HCT116 Cells
- High-Throughput Screening Assays/instrumentation
- High-Throughput Screening Assays/methods
- Humans
- Microfluidic Analytical Techniques/instrumentation
- Microfluidic Analytical Techniques/methods
- Printing, Three-Dimensional
- Proteomics/instrumentation
- Proteomics/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Gabriel J. LaBonia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katelyn R. Ludwig
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - C. Bruce Mousseau
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
6
|
|
7
|
Fong EL, Santoro M, Farach-Carson MC, Kasper FK, Mikos AG. TISSUE ENGINEERING PERFUSABLE CANCER MODELS. Curr Opin Chem Eng 2014; 3:112-117. [PMID: 24634812 DOI: 10.1016/j.coche.2013.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of fluid flow on cancer progression is currently not well understood, highlighting the need for perfused tumor models to close this gap in knowledge. Enabling biological processes at the cellular level to be modeled with high spatiotemporal control, microfluidic tumor models have demonstrated applicability as platforms to study cell-cell interactions, effect of interstitial flow on tumor migration and the role of vascular barrier function. To account for the multi-scale nature of cancer growth and invasion, macroscale models are also necessary. The consideration of fluid dynamics within tumor models at both the micro- and macroscopic levels may greatly improve our ability to more fully mimic the tumor microenvironment.
Collapse
Affiliation(s)
- E L Fong
- Department of Bioengineering, Rice University, Houston, TX 77030
| | - M Santoro
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005
| | - M C Farach-Carson
- Department of Bioengineering, Rice University, Houston, TX 77030 ; Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251
| | - F K Kasper
- Department of Bioengineering, Rice University, Houston, TX 77030
| | - A G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030 ; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005
| |
Collapse
|
8
|
McMahon KM, Volpato M, Chi HY, Musiwaro P, Poterlowicz K, Peng Y, Scally AJ, Patterson LH, Phillips RM, Sutton CW. Characterization of Changes in the Proteome in Different Regions of 3D Multicell Tumor Spheroids. J Proteome Res 2012; 11:2863-75. [DOI: 10.1021/pr2012472] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. M. McMahon
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - M. Volpato
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - H. Y. Chi
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - P. Musiwaro
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - K. Poterlowicz
- Department of Computing, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - Y. Peng
- Department of Computing, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - A. J. Scally
- School of Health Studies, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - L. H. Patterson
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - R. M. Phillips
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - C. W. Sutton
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| |
Collapse
|
9
|
Gonçalves FDC, Paz AHDR, Lora PS, Passos EP, Cirne-Lima EO. Dynamic culture improves MSC adhesion on freeze-dried bone as a scaffold for bone engineering. World J Stem Cells 2012; 4:9-16. [PMID: 22468180 PMCID: PMC3312925 DOI: 10.4252/wjsc.v4.i2.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the interaction between mesenchymal stem cells (MSCs) and bone grafts using two different cultivation methods: static and dynamic. METHODS MSCs were isolated from rat bone marrow. MSC culture was analyzed according to the morphology, cell differentiation potential, and surface molecular markers. Before cell culture, freeze-dried bone (FDB) was maintained in culture for 3 d in order to verify culture medium pH. MSCs were co-cultured with FDB using two different cultivation methods: static co-culture (two-dimensional) and dynamic co-culture (three-dimensional). After 24 h of cultivation by dynamic or static methods, histological analysis of Cell adhesion on FDB was performed. Cell viability was assessed by the Trypan Blue exclusion method on days 0, 3 and 6 after dynamic or static culture. Adherent cells were detached from FDB surface, stained with Trypan Blue, and quantified to determine whether the cells remained on the graft surface in prolonged non-dynamic culture. Statistical analyses were performed with SPSS and a P < 0.05 was considered significant. RESULTS The results showed a clear potential for adipogenic and osteogenic differentiation of MSC cultures. Rat MSCs were positive for CD44, CD90 and CD29 and negative for CD34, CD45 and CD11bc. FDBs were maintained in culture for 3 d and the results showed there was no significant variation in the culture medium pH with FDB compared to pure medium pH (P > 0.05). In histological analysis, there was a significant difference in the amount of adhered cells on FDB between the two cultivation methods (P < 0.05). The MSCs in the dynamic co-culture method demonstrated greater adhesion on the bone surface than in static co-culture method. On day 0, the cell viability in the dynamic system was significantly higher than in the static system (P < 0.05). There was a statistical difference in cell viability between days 0, 3 and 6 after dynamic culture (P < 0.05). In static culture, cell viability on day 6 was significantly lower than on day 3 and 0 (P < 0.05). CONCLUSION An alternative cultivation method was developed to improve the MSCs adhesion on FDB, demonstrating that dynamic co-culture provides a superior environment over static conditions.
Collapse
Affiliation(s)
- Fabiany da Costa Gonçalves
- Fabiany da Costa Gonçalves, Ana Helena da Rosa Paz, Priscila Schmidt Lora, Eduardo Pandolfi Passos, Elizabeth Obino Cirne-Lima, Embryology and Cell Differentiation Laboratory, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, RS, 90035-903, Brazil
| | | | | | | | | |
Collapse
|
10
|
In search of optimal scaffold for regenerative medicine and therapeutic delivery. Ther Deliv 2011; 2:231-4. [DOI: 10.4155/tde.10.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Understanding extracellular matrix (ECM) biology is imperative for tissue engineering and regenerative medicine, which seeks functionally viable cells to be delivered at the site of injury in addition to restoring tissue/organ shape through artificial scaffolds. Cells cultured by conventional methods that allow only 2D growth are not the true representatives of functional cells existing in vivo. To expect an in vivo-like cellular response, it is mandatory to recreate an ECM-mimicking microenvironment, one of the fundamental needs of which is to allow cells to grow in a 3D scaffold. A convenient, user-friendly technology that can bridge the knowledge gaps and advance our comprehension of cell–cell and cell–ECM dynamics in a 3D environment is, therefore, the need of the hour. Such technologies can provide a novel tool for therapeutic delivery as well.
Collapse
|
11
|
Biosensors coated with sulfated polysaccharides for the detection of hepatocyte growth factor/scatter factor in cell culture medium. Biosens Bioelectron 2010; 26:1706-9. [DOI: 10.1016/j.bios.2010.07.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/02/2010] [Accepted: 07/16/2010] [Indexed: 11/18/2022]
|