1
|
QingNing S, Mohd Ismail ZI, Ab Patar MNA, Mat Lazim N, Hadie SNH, Mohd Noor NF. The limelight of adipose-derived stem cells in the landscape of neural tissue engineering for peripheral nerve injury. Tissue Cell 2024; 91:102556. [PMID: 39293138 DOI: 10.1016/j.tice.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND AIMS Challenges in treating peripheral nerve injury include prolonged repair time and insufficient functional recovery. Stem cell therapy coupled with neural tissue engineering has been shown to induce nerve regeneration following peripheral nerve injury. Among these stem cells, adipose-derived stem cells (ADSCs) are preferred due to their accessibility, expansion, multidirectional differentiation, and production of essential nutrient factors for nerve growth. In recent years, ADSC-laden nerve guide conduit has been utilized to enhance the therapeutic effects of tissue-engineered nerve grafts. This review explores existing research that recognizes the roles played by ADSCs in inducing peripheral nerve regeneration following injury and summarizes the different methods of application of ADSC-laden nerve conduit in neural tissue engineering.
Collapse
Affiliation(s)
- Sun QingNing
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia; Department of Rehabilitation, School of Special Education, Zhengzhou Normal University, Zhengzhou 450044, China.
| | - Zul Izhar Mohd Ismail
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Mohd Nor Azim Ab Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Siti Nurma Hanim Hadie
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Nor Farid Mohd Noor
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Kuala Terengganu, Terengganu 20400, Malaysia.
| |
Collapse
|
2
|
Han Y, Barasa P, Zeger L, Salomonsson SB, Zanotti F, Egli M, Zavan B, Trentini M, Florin G, Vaerneus A, Aldskogius H, Fredriksson R, Kozlova EN. Effects of microgravity on neural crest stem cells. Front Neurosci 2024; 18:1379076. [PMID: 38660221 PMCID: PMC11041629 DOI: 10.3389/fnins.2024.1379076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Exposure to microgravity (μg) results in a range of systemic changes in the organism, but may also have beneficial cellular effects. In a previous study we detected increased proliferation capacity and upregulation of genes related to proliferation and survival in boundary cap neural crest stem cells (BC) after MASER14 sounding rocket flight compared to ground-based controls. However, whether these changes were due to μg or hypergravity was not clarified. In the current MASER15 experiment BCs were exposed simultaneously to μg and 1 g conditions provided by an onboard centrifuge. BCs exposed to μg displayed a markedly increased proliferation capacity compared to 1 g on board controls, and genetic analysis of BCs harvested 5 h after flight revealed an upregulation, specifically in μg-exposed BCs, of Zfp462 transcription factor, a key regulator of cell pluripotency and neuronal fate. This was associated with alterations in exosome microRNA content between μg and 1 g exposed MASER15 specimens. Since the specimens from MASER14 were obtained for analysis with 1 week's delay, we examined whether gene expression and exosome content were different compared to the current MASER15 experiments, in which specimens were harvested 5 h after flight. The overall pattern of gene expression was different and Zfp462 expression was down-regulated in MASER14 BC μg compared to directly harvested specimens (MASER15). MicroRNA exosome content was markedly altered in medium harvested with delay compared to directly collected samples. In conclusion, our analysis indicates that even short exposure to μg alters gene expression, leading to increased BC capacity for proliferation and survival, lasting for a long time after μg exposure. With delayed harvest of specimens, a situation which may occur due to special post-flight circumstances, the exosome microRNA content is modified compared to fast specimen harvest, and the direct effects from μg exposure may be partially attenuated, whereas other effects can last for a long time after return to ground conditions.
Collapse
Affiliation(s)
- Yilin Han
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Povilas Barasa
- Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Lukas Zeger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sara B. Salomonsson
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marcel Egli
- Space Biology Group, School of Engineering and Architecture, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, Hergiswil, Switzerland
- National Center for Biomedical Research in Space, Innovation Cluster Space and Aviation, University of Zurich, Zurich, Switzerland
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | | | - Håkan Aldskogius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Uppsala University, Uppsala, Sweden
| | - Elena N. Kozlova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Han Y, Zeger L, Tripathi R, Egli M, Ille F, Lockowandt C, Florin G, Atic E, Redwan IN, Fredriksson R, Kozlova EN. Molecular genetic analysis of neural stem cells after space flight and simulated microgravity on earth. Biotechnol Bioeng 2021; 118:3832-3846. [PMID: 34125436 DOI: 10.1002/bit.27858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Understanding how stem cells adapt to space flight conditions is fundamental for human space missions and extraterrestrial settlement. We analyzed gene expression in boundary cap neural crest stem cells (BCs), which are attractive for regenerative medicine by their ability to promote proliferation and survival of cocultured and co-implanted cells. BCs were launched to space (space exposed cells) (SEC), onboard sounding rocket MASER 14 as free-floating neurospheres or in a bioprinted scaffold. For comparison, BCs were placed in a random positioning machine (RPM) to simulate microgravity on earth (RPM cells) or were cultured under control conditions in the laboratory. Using next-generation RNA sequencing and data post-processing, we discovered that SEC upregulated genes related to proliferation and survival, whereas RPM cells upregulated genes associated with differentiation and inflammation. Thus, (i) space flight provides unique conditions with distinctly different effects on the properties of BC compared to earth controls, and (ii) the space flight exposure induces postflight properties that reinforce the utility of BC for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Yilin Han
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Uppsala, Sweden
| | - Lukas Zeger
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Uppsala, Sweden
| | - Rekha Tripathi
- Department of Pharmaceutical Bioscience, Molecular Pharmacology, Uppsala University, Uppsala, Sweden
| | - Marcel Egli
- Luzerne School of Engineering and Architecture, Institute of Medical Engineering (IMT), Luzerne, Switzerland
| | - Fabian Ille
- Luzerne School of Engineering and Architecture, Institute of Medical Engineering (IMT), Luzerne, Switzerland
| | | | - Gunnar Florin
- Swedish Space Corporation, Science Service Division, Solna, Sweden
| | | | | | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Molecular Pharmacology, Uppsala University, Uppsala, Sweden
| | - Elena N Kozlova
- Department of Neuroscience, Regenerative Neurobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Khazaei S, Keshavarz G, Bozorgi A, Nazari H, Khazaei M. Adipose tissue-derived stem cells: a comparative review on isolation, culture, and differentiation methods. Cell Tissue Bank 2021; 23:1-16. [PMID: 33616792 DOI: 10.1007/s10561-021-09905-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/01/2021] [Indexed: 01/14/2023]
Abstract
Adipose tissue-derived stem cells (ADSCs) are an available source of mesenchymal stem cells with the appropriate capacity to in vitro survive, propagate, and differentiate into cells from three lineages of ectoderm, mesoderm, and endoderm. The biological features of ADSCs depend on the donor physiology and health status, isolation procedure, culture conditions, and differentiation protocols used. Adipose tissue samples are provided by surgery and lipoaspiration-based methods and subjected to various mechanical and chemical digestion techniques to finally generate a heterogeneous mixture named stromal vascular fraction (SVF). ADSCs are purified through varied cell populations that exist within SVF and cultured under standard conditions to give rise to a highly rich resource of stem cells directly applied in the clinic or differentiated into a wide range of cells. The development and optimization of conventional isolation, expansion, and differentiation methods seem noteworthy to preserve the desirable biological functions of ADSCs in pre-clinical and clinical investigations.
Collapse
Affiliation(s)
- Saber Khazaei
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazal Keshavarz
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Nazari
- Department of Orofacial Surgery, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Qu X, Wang Z, Wu K, Wang Y, Shan L. Zoledronate inhibits the differentiation potential of adipose-derived stem cells into osteoblasts in repairing jaw necrosis. Mol Cell Probes 2020; 51:101525. [PMID: 31982509 DOI: 10.1016/j.mcp.2020.101525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To explore the inhibitory effects of zoledronate (ZOL) on adipose-derived stem cells (ADSCs) into osteoblasts for repairing jaw necrosis. METHODS ADSCs were induced to differentiate into osteoblasts. The differentiation characteristics of osteoblasts was observed under inverted microscope by alizarin red staining. The transwell assay was performed to evaluate the migration of ADSCs co-cultured with osteoblasts and divided into ZOL group treated with ZOL and N-ZOL group without ZOL treatment. The differentiation and proliferation characteristics of ADSCs differentiated osteoblasts were observed respectively. The expression of CTSK (Cathepsin K) and FGFR3 (Fibroblast growth factor receptor 3) in osteoblasts were analyzed by immunofluorescence and western blot. RESULTS The differentiation degree and proliferation of ADSCs to osteoblasts in N-ZOL group were both higher than those in ZOL group. The migratory cell number in ADSCs differentiation in ZOL group was higher than that of N-ZOL group. The protein expression of CTSK and FGFR3 in ADSCs differentiated to osteoblasts in ZOL group was higher than that in N-ZOL group. CONCLUSION The differentiation of ADSCs into osteoblasts is significantly inhibited by ZOL. Due to this reason, it may be difficult to achieve good results by ZOL induced ADSCs into osteoblasts in repairing jaw necrosis.
Collapse
Affiliation(s)
- Xingzhou Qu
- Department of Oral & Maxillofacial-Head Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University, School of Medicine, Shanghai, 200011, China
| | - Zhen Wang
- Department of Oral & Maxillofacial-Head Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University, School of Medicine, Shanghai, 200011, China
| | - Kailiu Wu
- Department of Oral & Maxillofacial-Head Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University, School of Medicine, Shanghai, 200011, China
| | - Yang Wang
- Department of Oral & Maxillofacial-Head Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University, School of Medicine, Shanghai, 200011, China.
| | - Liancheng Shan
- Department of Orthopedics, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
6
|
Adipose Stem Cell-Based Clinical Strategy for Neural Regeneration: A Review of Current Opinion. Stem Cells Int 2019; 2019:8502370. [PMID: 31827536 PMCID: PMC6885831 DOI: 10.1155/2019/8502370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 02/05/2023] Open
Abstract
Nerve injury is a critical problem in the clinic. Nerve injury causes serious clinic issues including pain and dysfunctions for patients. The disconnection between damaged neural fibers and muscles will result in muscle atrophy in a few weeks if no treatment is applied. Moreover, scientists have discovered that nerve injury can affect the osteogenic differentiation of skeletal stem cells (SSCs) and the fracture repairing. In plastic surgery, muscle atrophy and bone fracture after nerve injury have plagued clinicians for many years. How to promote neural regeneration is the core issue of research in the recent years. Without obvious effects of traditional neurosurgical treatments, research on stem cells in the past 10 years has provided a new therapeutic strategy for us to address this problem. Adipose stem cells (ASCs) are a kind of mesenchymal stem cells that have differentiation potential in adipose tissue. In the recent years, ASCs have become the focus of regenerative medicine. They play a pivotal role in tissue regeneration engineering. As a type of stem cell, ASCs are becoming popular for neuroregenerative medicine due to their advantages and characteristics. In the various diseases of the nervous system, ASCs are gradually applied to treat the related diseases. This review article focuses on the mechanism and clinical application of ASCs in nerve regeneration as well as the related research on ASCs over the past decades.
Collapse
|