1
|
Aziz MA. Multiomics approach towards characterization of tumor cell plasticity and its significance in precision and personalized medicine. Cancer Metastasis Rev 2024:10.1007/s10555-024-10190-x. [PMID: 38761231 DOI: 10.1007/s10555-024-10190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Cellular plasticity refers to the ability of cells to change their identity or behavior, which can be advantageous in some cases (e.g., tissue regeneration) but detrimental in others (e.g., cancer metastasis). With a better understanding of cellular plasticity, the complexity of cancer cells, their heterogeneity, and their role in metastasis is being unraveled. The plasticity of the cells could also prove as a nemesis to their characterization. In this review, we have attempted to highlight the possibilities and benefits of using multiomics approach in characterizing the plastic nature of cancer cells. There is a need to integrate fragmented evidence at different levels of cellular organization (DNA, RNA, protein, metabolite, epigenetics, etc.) to facilitate the characterization of different forms of plasticity and cell types. We have discussed the role of cellular plasticity in generating intra-tumor heterogeneity. Different omics level evidence is being provided to highlight the variety of molecular determinants discovered using different techniques. Attempts have been made to integrate some of this information to provide a quantitative assessment and scoring of the plastic nature of the cells. However, there is a huge gap in our understanding of mechanisms that lead to the observed heterogeneity. Understanding of these mechanism(s) is necessary for finding targets for early detection and effective therapeutic interventions in metastasis. Targeting cellular plasticity is akin to neutralizing a moving target. Along with the advancements in precision and personalized medicine, these efforts may translate into better clinical outcomes for cancer patients, especially in metastatic stages.
Collapse
Affiliation(s)
- Mohammad Azhar Aziz
- Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
- Cancer Nanomedicine Consortium, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
2
|
Zhao N, Lai C, Wang Y, Dai S, Gu H. Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer 2024; 1879:189096. [PMID: 38499079 DOI: 10.1016/j.bbcan.2024.189096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.
Collapse
Affiliation(s)
- Ningning Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanxi Lai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou 310000, China
| | - Sheng Dai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
3
|
Novoa Díaz MB, Carriere P, Gentili C. How the interplay among the tumor microenvironment and the gut microbiota influences the stemness of colorectal cancer cells. World J Stem Cells 2023; 15:281-301. [PMID: 37342226 PMCID: PMC10277969 DOI: 10.4252/wjsc.v15.i5.281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
4
|
Roy A, Padhi SS, Khyriem I, Nikose S, Sankar S. H H, Bharathavikru RS. Resetting the epigenome: Methylation dynamics in cancer stem cells. Front Cell Dev Biol 2022; 10:909424. [PMID: 36225315 PMCID: PMC9549938 DOI: 10.3389/fcell.2022.909424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
The molecular mechanisms that regulate stem cell pluripotency and differentiation has shown the crucial role that methylation plays in this process. DNA methylation has been shown to be important in the context of developmental pathways, and the role of histone methylation in establishment of the bivalent state of genes is equally important. Recent studies have shed light on the role of RNA methylation changes in stem cell biology. The dynamicity of these methylation changes not only regulates the effective maintenance of pluripotency or differentiation, but also provides an amenable platform for perturbation by cellular stress pathways that are inherent in immune responses such as inflammation or oncogenic programs involving cancer stem cells. We summarize the recent research on the role of methylation dynamics and how it is reset during differentiation and de-differentiation.
Collapse
Affiliation(s)
- Aiendrila Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
- EMBL, Rome, Italy
| | - Swati Shree Padhi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
| | - Ibakordor Khyriem
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
| | - Saket Nikose
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Harsha Sankar S. H
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
| | - Ruthrotha Selvi Bharathavikru
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
- *Correspondence: Ruthrotha Selvi Bharathavikru,
| |
Collapse
|
5
|
Zhou Y, Qiu S, Kim JT, Lee SB, Park HJ, Son MJ, Lee HJ, Chen J. Garcinone C Suppresses Tumorsphere Formation and Invasiveness by Hedgehog/Gli1 Signaling in Colorectal Cancer Stem-like Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7941-7952. [PMID: 35749593 DOI: 10.1021/acs.jafc.2c01891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hyperactivation of hedgehog signaling occurs in colorectal cancer stem-like cells (CSCs), a rare subpopulation, potentially involved in metastasis, chemotherapy resistance, and cancer relapse. Garcinone C, a xanthone isolated from mangosteen (Garcinia mangostana), suppresses colorectal cancer in vivo and in vitro by inhibiting Gli1-dependent noncanonical hedgehog signaling. Herein, we investigated the effect of garcinone C on cancer stemness and invasiveness in colorectal cancer; Gli1 was noted as pivotal in maintaining stemness and invasiveness in HCT116 and HT29 CSCs. Garcinone C inhibited the proliferation and self-renewal of HCT116 and HT29 CSCs. Colon cancer stemness markers such as CD44, CD133, ALDH1, and Nanog were significantly decreased by garcinone C. Computational studies showed that garcinone C showed a high affinity with the Gli1 protein ZF domain by forming hydrogen bonds with amino acid residues of ASP244, ARG223, and ASP216. Besides, MG132 blocked the effects of garcinone C on Gli1. Thus, garcinone C suppressed colorectal CSCs by binding to Gli1 and enhancing its degradation. MMP2 and MMP9 levels, invasive-related markers, were increased in HCT116 CSCs but decreased by garcinone C. E-cadherin level was reduced in HCT116 CSCs, while the presence of garcinone C was restored. Garcinone C inhibited the proliferation and invasiveness of colorectal CSCs by targeting Gli1-dependent Hh signaling. Garcinone C may be a potent natural agent against colorectal cancer relapse.
Collapse
Affiliation(s)
- Yimeng Zhou
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Shuai Qiu
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Seung Beom Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Ho Jin Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Moon Jeong Son
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| | - Jing Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Cancer stem cell marker expression and methylation status in patients with colorectal cancer. Oncol Lett 2022; 24:231. [PMID: 35720495 PMCID: PMC9185140 DOI: 10.3892/ol.2022.13352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
The number of individuals diagnosed with colorectal cancer (CRC) has been on an alarming upward trajectory over the past decade. In some countries, this cancer represents one of the most frequently diagnosed types of neoplasia. Therefore, it is an important demand to study the pathology underlying this disease to gain insights into the mechanism of resistance to treatment. Resistance of tumors to chemotherapy and tumor aggressiveness have been associated with a minor population of neoplastic cells, which are considered to be responsible for tumor recurrence. These types of neoplastic cells are known as cancer stem cells, which have been previously reported to serve an important role in pathogenesis of this malignant disease. Slovakia has one of the highest incidence rates of CRC worldwide. In the present study, the aim was to classify the abundance of selected stem cell markers (CD133, CD166 and Lgr5) in CRC tumors using flow cytometry. In addition, the methylation status of selected genomic regions of CRC biomarkers (ADAMTS16, MGMT, PROM1 (CD133), LGR5 and ALCAM) was investigated by pyrosequencing in a cohort of patients from Martin University Hospital, Martin, Slovakia. Samples from both primary tumors and metastatic tumors were tested. Analysis of DNA methylation in the genomic regions of indicated five CRC biomarkers was also performed, which revealed the highest levels of methylation in the A disintegrin and metalloproteinase with thrombospondin motifs 16 and O6-methyguanine-DNA methyl transferase genes, whereas the lowest levels of methylation were found in genes expressing prominin-1, leucine-rich repeat-containing G-protein-coupled receptor 5 and activated leukocyte cell adhesion molecule. Furthermore, tumor tissues from metastases showed significantly higher levels of CD133+ cells compared with that in primary tumors. Higher levels of CD133+ cells correlated with TNM stage and the invasiveness of CRC into the lymphatic system. Although relatively small number of samples was processed, CD133 marker was consider to be important marker in pathology of CRC.
Collapse
|
7
|
Berlin C, Cottard F, Willmann D, Urban S, Tirier SM, Marx L, Rippe K, Schmitt M, Petrocelli V, Greten FR, Fichtner-Feigl S, Kesselring R, Metzger E, Schüle R. KMT9 controls stemness and growth of colorectal cancer. Cancer Res 2021; 82:210-220. [PMID: 34737213 DOI: 10.1158/0008-5472.can-21-1261] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/26/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer-associated deaths worldwide. Treatment failure and tumor recurrence due to survival of therapy-resistant cancer stem/initiating cells represent major clinical issues to overcome. In this study, we identified lysine methyltransferase 9 (KMT9), an obligate heterodimer composed of KMT9α and KMT9β that monomethylates histone H4 at lysine 12 (H4K12me1), as an important regulator in colorectal tumorigenesis. KMT9α and KMT9β were overexpressed in CRC and colocalized with H4K12me1 at promoters of target genes involved in the regulation of proliferation. Ablation of KMT9α drastically reduced colorectal tumorigenesis in mice and prevented the growth of murine as well as human patient-derived tumor organoids. Moreover, loss of KMT9α impaired the maintenance and function of CRC stem/initiating cells and induced apoptosis specifically in this cellular compartment. Together, these data suggest that KMT9 is an important regulator of colorectal carcinogenesis, identifying KMT9 as a promising therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Christopher Berlin
- Klinik für Allgemein- und Viszeralchirurgie, Klinikum der Albert-Ludwigs-Universität Freiburg
| | - Felicie Cottard
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg
| | - Dominica Willmann
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg
| | - Sylvia Urban
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg
| | | | - Lisa Marx
- Klinik für Allgemein- und Viszeralchirurgie, Klinikum der Albert-Ludwigs-Universität Freiburg
| | | | - Mark Schmitt
- Institut für Tumorbiologie und experimentelle Therapie, Georg-Speyer-Haus Frankfurt/Main
| | - Valentina Petrocelli
- Institut für Tumorbiologie und experimentelle Therapie, Georg-Speyer-Haus Frankfurt/Main
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy Paul-Ehrlich-Str
| | | | - Rebecca Kesselring
- Klinik für Allgemein- und Viszeralchirurgie, Klinikum der Albert-Ludwigs-Universität Freiburg
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg
| |
Collapse
|
8
|
Huang JL, Oshi M, Endo I, Takabe K. Clinical relevance of stem cell surface markers CD133, CD24, and CD44 in colorectal cancer. Am J Cancer Res 2021; 11:5141-5154. [PMID: 34765317 PMCID: PMC8569346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023] Open
Abstract
Colon cancer stem cells (CSC) identified by cell surface markers CD133, CD24, and CD44, have been shown to be involved with tumor formation, chemotherapy resistance, and the progression of metastatic disease. Using an in silico translational approach, we hypothesize that a combination of these CSC markers has prognostic value in a large cohort of patients with colorectal cancer. Clinicopathologic and RNA expression data from a total of 594 colorectal cancer (CRC) patients from TCGA were analyzed. The expression of CD133, CD24, and CD44 was individually defined as "high" or "low" based on the median expression. Disease specific survival (DSS) and overall survival (OS) were not associated with tumors that are CD133-high or CD44-high alone. Patients with CD24-high tumors have significantly better DSS (P<0.001) and OS (P = 0.043). CD24-high, CD44-high and CD133-high tumors were associated with significantly greater EGFR, KRAS and Ki67 expression (all P<0.001). CD133, CD24 and CD44-high tumors were independently enriched for conventional stemness-related signaling pathways such as Wnt/β-catenin and Hedgehog signaling pathways. There was no survival difference linked to CD133-high/CD44-low patients, but CD44-high/CD24-low patients have worse DSS (P = 0.005) compared with CD44-low/CD24-high patients. CD133-high/CD24-low tumors show significant negative enrichment of MYC targets, E2F targets, G2M checkpoint and mitotic spindle gene sets, suggesting less cell proliferation in these tumors. Patients with CD133-high/CD24-low tumors have worse DSS (P = 0.004) and OS (P = 0.044), and are more likely to have early and late recurrences. In conclusion, we demonstrated that CD133-high/CD24-low tumors may predict colorectal cancer prognosis.
Collapse
Affiliation(s)
- Jing Li Huang
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| |
Collapse
|
9
|
Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. BIOLOGY 2021; 10:854. [PMID: 34571731 PMCID: PMC8466833 DOI: 10.3390/biology10090854] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens. Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to chemotherapy resistance is still reported in many patients. This resistance, which can be defined by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the dysregulation of various components in distinct pathways. In recent years, it has been established that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery, regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox imbalances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful modulation of these mechanisms have been the game plan of numerous studies that had employed small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effectively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide fundamental knowledge to further our understanding prior developing novel drugs in the near future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the patient's overall survival.
Collapse
Affiliation(s)
- Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| |
Collapse
|
10
|
TRIM25 regulates oxaliplatin resistance in colorectal cancer by promoting EZH2 stability. Cell Death Dis 2021; 12:463. [PMID: 33966039 PMCID: PMC8106682 DOI: 10.1038/s41419-021-03734-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/12/2023]
Abstract
Resistance to chemotherapy remains the major cause of treatment failure in patients with colorectal cancer (CRC). Here, we identified TRIM25 as an epigenetic regulator of oxaliplatin (OXA) resistance in CRC. The level of TRIM25 in OXA-resistant patients who experienced recurrence during the follow-up period was significantly higher than in those who had no recurrence. Patients with high expression of TRIM25 had a significantly higher recurrence rate and worse disease-free survival than those with low TRIM25 expression. Downregulation of TRIM25 dramatically inhibited, while overexpression of TRIM25 increased, CRC cell survival after OXA treatment. In addition, TRIM25 promoted the stem cell properties of CRC cells both in vitro and in vivo. Importantly, we demonstrated that TRIM25 inhibited the binding of E3 ubiquitin ligase TRAF6 to EZH2, thus stabilizing and upregulating EZH2, and promoting OXA resistance. Our study contributes to a better understanding of OXA resistance and indicates that inhibitors against TRIM25 might be an excellent strategy for CRC management in clinical practice.
Collapse
|
11
|
Liang Y, Su Q, Wu X. Identification and Validation of a Novel Six-Gene Prognostic Signature of Stem Cell Characteristic in Colon Cancer. Front Oncol 2021; 10:571655. [PMID: 33680915 PMCID: PMC7933554 DOI: 10.3389/fonc.2020.571655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells play crucial roles in the development of colon cancer (COAD). This study tried to explore new markers for predicting the prognosis of colon cancer based on stem cell-related genes. In our study, 424 COAD samples from TCGA were divided into three subtypes based on 412 stem cell-related genes; there were significant differences in prognosis, clinical characteristics, and immune scores between these subtypes. 694 genes were screened between subgroups. Subsequently a six-gene signature (DYDC2, MS4A15, MAGEA1, WNT7A, APOD, and SERPINE1) was established. This model had strong robustness and stable predictive performance in cohorts of different platforms. Taken together, the six-gene signature constructed in this study could be used as a novel prognostic marker for COAD patients.
Collapse
Affiliation(s)
- Yichao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Su
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Che N, Yang Z, Liu X, Li M, Feng Y, Zhang C, Li C, Cui Y, Xuan Y. Suppression of LETM1 inhibits the proliferation and stemness of colorectal cancer cells through reactive oxygen species-induced autophagy. J Cell Mol Med 2021; 25:2110-2120. [PMID: 33314691 PMCID: PMC7882971 DOI: 10.1111/jcmm.16169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Leucine zipper-EF-hand-containing transmembrane protein 1 (LETM1) is a mitochondrial inner membrane protein that is highly expressed in various cancers. Although LETM1 is known to be associated with poor prognosis in colorectal cancer (CRC), its roles in autophagic cell death in CRC have not been explored. In this study, we examined the mechanisms through which LETM1 mediates autophagy in CRC. Our results showed that LETM1 was highly expressed in CRC tissues and that down-regulation of LETM1 inhibited cell proliferation and induced S-phase arrest. LETM1 silencing also suppressed cancer stem cell-like properties and induced autophagy in CRC cells. Additionally, the autophagy inhibitor 3-methyladenine reversed the inhibitory effects of LETM1 silencing on proliferation and stemness, whereas the autophagy activator rapamycin had the opposite effects. Mechanistically, suppression of LETM1 increased the levels of reactive oxygen species (ROS) and mitochondrial ROS by regulation of SOD2, which in turn activated AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), initiated autophagy, and inhibited proliferation and stemness. Our findings suggest that silencing LETM1 induced autophagy in CRC cells by triggering ROS-mediated AMPK/mTOR signalling, thus blocking CRC progression, which will enhance our understanding of the molecular mechanism of LETM1 in CRC.
Collapse
Affiliation(s)
- Nan Che
- Department of PathologyYanbian University College of MedicineYanjiChina
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Zhaoting Yang
- Department of PathologyYanbian University College of MedicineYanjiChina
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Xingzhe Liu
- Department of PathologyYanbian University College of MedicineYanjiChina
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Mengxuan Li
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Ying Feng
- Department of PathologyYanbian University College of MedicineYanjiChina
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Chengye Zhang
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Chao Li
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| | - Yan Cui
- Department of OncologyAffiliated Hospital of Yanbian UniversityYanjiChina
| | - Yanhua Xuan
- Department of PathologyYanbian University College of MedicineYanjiChina
- Institute for Regenerative MedicineYanbian University College of MedicineYanjiChina
| |
Collapse
|
13
|
Possible Roles of Interleukin-4 and -13 and Their Receptors in Gastric and Colon Cancer. Int J Mol Sci 2021; 22:ijms22020727. [PMID: 33450900 PMCID: PMC7828336 DOI: 10.3390/ijms22020727] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
Interleukin (IL)-4 and -13 are structurally and functionally related cytokines sharing common receptor subunits. They regulate immune responses and, moreover, are involved in the pathogenesis of a variety of human neoplasms. Three different receptors have been described for IL-4, but only IL-4 receptor type II (IL-4Rα/IL-13Rα1) is expressed in solid tumors. While IL-13 can also bind to three different receptors, IL-13 receptor type I (IL-4Rα/IL-13Rα1/IL-13Rα2) and type II (IL-4Rα/IL-13Rα1) are expressed in solid tumors. After receptor binding, IL-4 and IL-13 can mediate tumor cell proliferation, survival, and metastasis in gastric or colon cancer. This review summarizes the results about the role of IL-4/IL-13 and their receptors in gastric and colon cancer.
Collapse
|
14
|
Wang X, Chi P. Reactivation of oncogenes involved in G1/S transcription and apoptosis pathways by low dose decitabine promotes HT29 human colon cancer cell growth in vitro. Am J Transl Res 2020; 12:7938-7952. [PMID: 33437371 PMCID: PMC7791509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/01/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND To examine the effects of low-dose decitabine (DAC) on the proliferation of HT-29 cell lines, and to explore the central mechanism by which low-dose DAC affects HT-29 cell proliferation using a systematic biological approach. METHODS First, we examined the global effects of DAC on cell proliferation, the cell cycle, and apoptosis in HT29 colon cancer cells. Then, a series test of cluster (STC) analysis and weighted gene coexpression network analysis (WGCNA) were employed to identify critical pathways involved in the response to DAC treatment using 3 datasets from the GEO database. Finally, the expression changes and promoter methylation levels of hub genes were further confirmed by in vitro experiments. RESULTS Low-dose DAC (less than 1 µM) promoted the proliferation and colony formation ability of HT-29 cell lines. The results of the system-level analysis, including STC analysis, WGCNA, and Gene set variation analysis (GSVA), showed that DAC modulated 3 critical pathways: G1/S-specific transcription involved in E2F-mediated regulation of Cyclin E-associated events, apoptosis pathways, and EMT pathways. Subsequent in vitro experiments showed that low-dose DAC (0.1 µM) promoted G1/S-specific transcription and decreased apoptosis rates. Then, several regulatory hub oncogenes in these 3 pathways, CCNE1, E2F1, BCL2, PCNA, FOXC1, VIM, CXCL1, and VCAM1, were further confirmed to be activated by DAC at either the mRNA or protein level. We chose the oncogene BCL2 as an example and detected its methylation status and the effect of low-dose DAC on BCL2 expression. Data from TCGA and Oncomine databases demonstrated that BCL2 was decreased in colon cancer compared with normal mucosa. Further analysis showed that BCL2 had an increased degree of promoter methylation in 12 methylated sites in colon cancer compared with normal colon tissues. Bisulfite sequencing PCR showed that low-dose DAC decreased the methylation rate at the BCL2 promoter region. CONCLUSIONS We concluded that low-dose DAC treatment resulted in a cancer-promoting effect in HT29 cell lines. Mechanistically, high methylation levels at the promoter region of oncogenes with dominant effects in CRC, such as BCL2 in HT29, might play a role in suppressing CRC by inhibiting oncogene expression. Low-dose DAC treatment triggered BCL2 expression by decreasing its promoter methylation level, thereby resulting in cancer promotion.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University People's Republic of China
| | - Pan Chi
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University People's Republic of China
| |
Collapse
|
15
|
Marsh DJ, Ma Y, Dickson KA. Histone Monoubiquitination in Chromatin Remodelling: Focus on the Histone H2B Interactome and Cancer. Cancers (Basel) 2020; 12:E3462. [PMID: 33233707 PMCID: PMC7699835 DOI: 10.3390/cancers12113462] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Chromatin remodelling is a major mechanism by which cells control fundamental processes including gene expression, the DNA damage response (DDR) and ensuring the genomic plasticity required by stem cells to enable differentiation. The post-translational modification of histone H2B resulting in addition of a single ubiquitin, in humans at lysine 120 (K120; H2Bub1) and in yeast at K123, has key roles in transcriptional elongation associated with the RNA polymerase II-associated factor 1 complex (PAF1C) and in the DDR. H2Bub1 itself has been described as having tumour suppressive roles and a number of cancer-related proteins and/or complexes are recognised as part of the H2Bub1 interactome. These include the RING finger E3 ubiquitin ligases RNF20, RNF40 and BRCA1, the guardian of the genome p53, the PAF1C member CDC73, subunits of the switch/sucrose non-fermenting (SWI/SNF) chromatin remodelling complex and histone methyltransferase complexes DOT1L and COMPASS, as well as multiple deubiquitinases including USP22 and USP44. While globally depleted in many primary human malignancies, including breast, lung and colorectal cancer, H2Bub1 is selectively enriched at the coding region of certain highly expressed genes, including at p53 target genes in response to DNA damage, functioning to exercise transcriptional control of these loci. This review draws together extensive literature to cement a significant role for H2Bub1 in a range of human malignancies and discusses the interplay between key cancer-related proteins and H2Bub1-associated chromatin remodelling.
Collapse
Affiliation(s)
- Deborah J. Marsh
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
- Kolling Institute, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Camperdown, NSW 2006, Australia
| | - Yue Ma
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
| | - Kristie-Ann Dickson
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
| |
Collapse
|
16
|
Trinel M, Le Lamer AC, Jullian V, Jacquemin D, Graton J, Cristofoli V, Crossay E, Yassine M, Rolland C, Vergnolle N, Mejia K, Joel Cabanillas B, Racaud-Sultan C, Fabre N. Daphnanes diterpenes from the latex of Hura crepitans L. And activity against human colorectal cancer cells Caco-2. Bioorg Chem 2020; 103:104132. [PMID: 32768743 DOI: 10.1016/j.bioorg.2020.104132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/16/2022]
Abstract
Hura crepitans (Euphorbiaceae) is a tree from South America that produces an irritant latex used as a fish poison. A bio-guided fractionation of an ethanolic extract of the latex led to the isolation and structural identification of three known daphnane-type diterpenes (1-3) including huratoxin (1), together with two new analogs (4, 5). Compound 1 was found to exhibit significant and selective cell growth inhibition against the colorectal cancer cell line Caco-2, with morphological modifications suggesting formations mimicking the intestinal crypt architecture. The underlying mechanism of 1 was further investigated, in comparison with 12-O-tetradecanoylphorbol-13-acetate (TPA), revealing two different mechanisms.
Collapse
Affiliation(s)
- Manon Trinel
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | | | - Valérie Jullian
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France; Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Denis Jacquemin
- CEISAM, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, Faculté des Sciences et des Techniques, Université de Nantes, France
| | - Jérôme Graton
- CEISAM, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, Faculté des Sciences et des Techniques, Université de Nantes, France
| | | | - Elise Crossay
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| | - May Yassine
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Kember Mejia
- Instituto de Investigaciones de la Amazonia Peruana (IIAP), Iquitos, Peru
| | - Billy Joel Cabanillas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | | | - Nicolas Fabre
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, France
| |
Collapse
|
17
|
Zhou P, Xie W, Huang HL, Huang RQ, Tian C, Zhu HB, Dai YH, Li ZY. circRNA_100859 functions as an oncogene in colon cancer by sponging the miR-217-HIF-1α pathway. Aging (Albany NY) 2020; 12:13338-13353. [PMID: 32644049 PMCID: PMC7377858 DOI: 10.18632/aging.103438] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) play an important role in cancer development and progression by regulating gene expression. The present study aimed to investigate the function of circRNA_100859 in colon cancer. circRNA expression profiles from a human circRNAs chip were analyzed. The effects of circRNA_100859 on cell proliferation and apoptosis were assessed in vitro and interactions between circRNA_100859 and its micro (mi)RNA and target genes were analyzed. The diagnostic and prognostic significance of circRNA_100859 was also investigated. It was identified that circRNA_100859 was overexpressed in colon cancer tissues and promoted cell proliferation and inhibited cell apoptosis. Additionally, bioinformatics and a dual-luciferase reporter assay confirmed that circRNA_100859 acted as a miR-217 sponge, and miR-217 directly targeted hypoxia-inducible factor (HIF)-1α. Rescue assays demonstrated that HIF-1α protein and mRNA expression levels and cell proliferation were regulated by the circRNA_100859/miR-217 axis (P<0.05). Furthermore, statistical analysis showed that the circRNA_100859-miR-217-HIF-1α axis was associated with Tumor-Node-Metastasis (TNM) stage, histological grade, and KRAS mutations, and also showed high diagnostic and prognostic value for patients with colon cancer (P<0.05). Therefore, it was concluded that circRNA_100859 functions as an oncogene in colon cancer by sponging the miR-217-HIF-1α pathway. In addition, the circRNA_100859-miR-217-HIF-1α axis may serve as a novel diagnostic and prognostic biomarker for patients with colon cancer.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xie
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Hua-Lin Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Rong-Qi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Chao Tian
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hong-Bo Zhu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying-Huan Dai
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi-Yuan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|