1
|
Chen L, Tang B, Xie G, Yang R, Zhang B, Wang Y, Zhang Y, Jiang D, Zhang X. Bovine Pluripotent Stem Cells: Current Status and Prospects. Int J Mol Sci 2024; 25:2120. [PMID: 38396797 PMCID: PMC10889747 DOI: 10.3390/ijms25042120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Pluripotent stem cells (PSCs) can differentiate into three germ layers and diverse autologous cell lines. Since cattle are the most commonly used large domesticated animals, an important food source, and bioreactors, great efforts have been made to establish bovine PSCs (bPSCs). bPSCs have great potential in bovine breeding and reproduction, modeling in vitro differentiation, imitating cancer development, and modeling diseases. Currently, bPSCs mainly include bovine embryonic stem cells (bESCs), bovine induced pluripotent stem cells (biPSCs), and bovine expanded potential stem cells (bEPSCs). Establishing stable bPSCs in vitro is a critical scientific challenge, and researchers have made numerous efforts to this end. In this review, the category of PSC pluripotency; the establishment of bESCs, biPSCs, and bEPSCs and its challenges; and the application outlook of bPSCs are discussed, aiming to provide references for future research.
Collapse
Affiliation(s)
- Lanxin Chen
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Tang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guanghong Xie
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rui Yang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Boyang Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yueqi Wang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Daozhen Jiang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xueming Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Punetha M, Saini S, Chaudhary S, Yadav PS, Whitworth K, Green J, Kumar D, Kues WA. Induced Pluripotent Stem Cells in the Era of Precise Genome Editing. Curr Stem Cell Res Ther 2024; 19:307-315. [PMID: 36880183 DOI: 10.2174/1574888x18666230307115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2023]
Abstract
Genome editing has enhanced our ability to understand the role of genetics in a number of diseases by facilitating the development of more precise cellular and animal models to study pathophysiological processes. These advances have shown extraordinary promise in a multitude of areas, from basic research to applied bioengineering and biomedical research. Induced pluripotent stem cells (iPSCs) are known for their high replicative capacity and are excellent targets for genetic manipulation as they can be clonally expanded from a single cell without compromising their pluripotency. Clustered, regularly interspaced short palindromic repeats (CRISPR) and CRISPR/Cas RNA-guided nucleases have rapidly become the method of choice for gene editing due to their high specificity, simplicity, low cost, and versatility. Coupling the cellular versatility of iPSCs differentiation with CRISPR/Cas9-mediated genome editing technology can be an effective experimental technique for providing new insights into the therapeutic use of this technology. However, before using these techniques for gene therapy, their therapeutic safety and efficacy following models need to be assessed. In this review, we cover the remarkable progress that has been made in the use of genome editing tools in iPSCs, their applications in disease research and gene therapy as well as the hurdles that remain in the actual implementation of CRISPR/Cas systems.
Collapse
Affiliation(s)
- Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Suman Chaudhary
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Prem Singh Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Kristin Whitworth
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jonathan Green
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Höltystr 10, 31535, Neustadt, Germany
| |
Collapse
|
3
|
Zhang Y, Zhou W, Yang J, Yang J, Wang W. Chimeric antigen receptor engineered natural killer cells for cancer therapy. Exp Hematol Oncol 2023; 12:70. [PMID: 37563648 PMCID: PMC10413722 DOI: 10.1186/s40164-023-00431-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Natural killer (NK) cells, a unique component of the innate immune system, are inherent killers of stressed and transformed cells. Based on their potent capacity to kill cancer cells and good tolerance of healthy cells, NK cells have been successfully employed in adoptive cell therapy to treat cancer patients. In recent years, the clinical success of chimeric antigen receptor (CAR)-T cells has proven the vast potential of gene-manipulated immune cells as the main force to fight cancer. Following the lessons learned from mature gene-transfer technologies and advanced strategies in CAR-T therapy, NK cells have been rapidly explored as a promising candidate for CAR-based therapy. An exponentially growing number of studies have employed multiple sources of CAR-NK cells to target a wide range of cancer-related antigens, showing remarkable outcomes and encouraging safety profiles. Clinical trials of CAR-NK cells have also shown their impressive therapeutic efficacy in the treatment of hematological tumors, but CAR-NK cell therapy for solid tumors is still in the initial stages. In this review, we present the favorable profile of NK cells as a potential platform for CAR-based engineering and then summarize the outcomes and strategies of CAR-NK therapies in up-to-date preclinical and clinical investigations. Finally, we evaluate the challenges remaining in CAR-NK therapy and describe existing strategies that can assist us in devising future prospective solutions.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiangping Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jinrong Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Hematology Research Laboratory, Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
4
|
Mao J, Saiding Q, Qian S, Liu Z, Zhao B, Zhao Q, Lu B, Mao X, Zhang L, Zhang Y, Sun X, Cui W. Reprogramming stem cells in regenerative medicine. SMART MEDICINE 2022; 1:e20220005. [PMID: 39188749 PMCID: PMC11235200 DOI: 10.1002/smmd.20220005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 08/28/2024]
Abstract
Induced pluripotent stem cells (iPSCs) that are generated from adult somatic cells are induced to express genes that make them pluripotent through reprogramming techniques. With their unlimited proliferative capacity and multifaceted differentiation potential and circumventing the ethical problems encountered in the application of embryonic stem cells (ESC), iPSCs have a broad application in the fields of cell therapy, drug screening, and disease models and may open up new possibilities for regenerative medicine to treat diseases in the future. In this review, we begin with different reprogramming cell technologies to obtain iPSCs, including biotechnological, chemical, and physical modulation techniques, and present their respective strengths, and limitations, as well as the recent progress of research. Secondly, we review recent research advances in iPSC reprogramming-based regenerative therapies. iPSCs are now widely used to study various clinical diseases of hair follicle defects, myocardial infarction, neurological disorders, liver diseases, and spinal cord injuries. This review focuses on the translational clinical research around iPSCs as well as their potential for growth in the medical field. Finally, we summarize the overall review and look at the potential future of iPSCs in the field of cell therapy as well as tissue regeneration engineering and possible problems. We believe that the advancing iPSC research will help drive long-awaited breakthroughs in cellular therapy.
Collapse
Affiliation(s)
- Jiayi Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shutong Qian
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhimo Liu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Binfan Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bolun Lu
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiyuan Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liucheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuguang Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoming Sun
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Du Z, Ng YY, Zha S, Wang S. piggyBac system to co-express NKG2D CAR and IL-15 to augment the in vivo persistence and anti-AML activity of human peripheral blood NK cells. Mol Ther Methods Clin Dev 2021; 23:582-596. [PMID: 34853803 PMCID: PMC8609108 DOI: 10.1016/j.omtm.2021.10.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Promising progress has been made in adoptive transfer of allogeneic natural killer (NK) cells to treat relapsed or refractory acute myeloid leukemia (AML). In this regard, chimeric antigen receptor (CAR)-modification of NK cells is considered as a compelling approach to augment the specificity and cytotoxicity of NK cells against AML. Using a non-viral piggyBac transposon technology and human peripheral blood-derived primary NK cells, we generated CAR-NK cells to target NKG2D ligands and demonstrated their in vitro activity in lysing cancer cells expressing the ligands and in vivo efficacy in inhibiting tumor growth in a xenograft KG-1 AML model. We further generated CAR-NK cells co-expressing transgenes for the NKG2D CAR and interleukin-15 (IL-15). The ectopic expression of IL-15 improved the in vitro and in vivo persistence of NKG2D CAR-NK cells, leading to enhanced in vivo tumor control and significant prolongation of mouse survival in the KG-1 AML model. Collectively, our findings demonstrate the ectopic expression of IL-15 as an important means to improve the antileukemic activity of NKG2D CAR-NK cells. Our study further illustrates the feasibility of using the piggyBac non-viral platform as an efficient and cost-effective way for CAR-NK cell manufacturing.
Collapse
Affiliation(s)
- Zhicheng Du
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | - Yu Yang Ng
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | - Shijun Zha
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| |
Collapse
|
6
|
Kues WA, Kumar D, Selokar NL, Talluri TR. Applications of genome editing tools in stem cells towards regenerative medicine: An update. Curr Stem Cell Res Ther 2021; 17:267-279. [PMID: 34819011 DOI: 10.2174/1574888x16666211124095527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
Precise and site specific genome editing through application of emerging and modern gene engineering techniques, namely zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) have swiftly progressed the application and use of the stem cell technology in the sphere of in-vitro disease modelling and regenerative medicine. Genome editing tools facilitate the manipulating of any gene in various types of cells with target specific nucleases. These tools aid in elucidating the genetics and etiology behind different diseases and have immense promise as novel therapeutics for correcting the genetic mutations, make alterations and cure diseases permanently that are not responding and resistant to traditional therapies. These genome engineering tools have evolved in the field of biomedical research and have also shown to have a significant improvement in clinical trials. However, their widespread use in research revealed potential safety issues, which need to be addressed before implementing such techniques in clinical purposes. Significant and valiant attempts are being made in order to surpass those hurdles. The current review outlines the advancements of several genome engineering tools and describes suitable strategies for their application towards regenerative medicine.
Collapse
Affiliation(s)
- Wilfried A Kues
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Department of Biotechnology, Stem Cell Physiology, Höltystr 10, 31535 Neustadt. Germany
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana. India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana. India
| | - Thirumala Rao Talluri
- Equine Production Campus, ICAR- National Research Centre on Equines, Bikaner-334001, Rajasthan. India
| |
Collapse
|
7
|
Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering. Int J Mol Sci 2021; 22:ijms22105084. [PMID: 34064900 PMCID: PMC8151067 DOI: 10.3390/ijms22105084] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
Transposons are mobile genetic elements evolved to execute highly efficient integration of their genes into the genomes of their host cells. These natural DNA transfer vehicles have been harnessed as experimental tools for stably introducing a wide variety of foreign DNA sequences, including selectable marker genes, reporters, shRNA expression cassettes, mutagenic gene trap cassettes, and therapeutic gene constructs into the genomes of target cells in a regulated and highly efficient manner. Given that transposon components are typically supplied as naked nucleic acids (DNA and RNA) or recombinant protein, their use is simple, safe, and economically competitive. Thus, transposons enable several avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture comprising the generation of pluripotent stem cells, the production of germline-transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species and therapy of genetic disorders in humans. This review describes the molecular mechanisms involved in transposition reactions of the three most widely used transposon systems currently available (Sleeping Beauty, piggyBac, and Tol2), and discusses the various parameters and considerations pertinent to their experimental use, highlighting the state-of-the-art in transposon technology in diverse genetic applications.
Collapse
Affiliation(s)
| | | | | | - Zoltán Ivics
- Correspondence: ; Tel.: +49-6103-77-6000; Fax: +49-6103-77-1280
| |
Collapse
|
8
|
Kakoty V, K C S, Dubey SK, Yang CH, Kesharwani P, Taliyan R. Lentiviral mediated gene delivery as an effective therapeutic approach for Parkinson disease. Neurosci Lett 2021; 750:135769. [PMID: 33636285 DOI: 10.1016/j.neulet.2021.135769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/07/2021] [Accepted: 02/19/2021] [Indexed: 11/28/2022]
Abstract
Continual strategies to devise a complete therapeutic cure for neurodegenerative conditions has been a challenge, majorly due to the presence of blood brain barrier. Lack of targeted delivery in order to minimize loss of dopamine (DA) neurones has been a major challenge to overcome anomalies in Parkinson Disease (PD). PD is a neuromotor degenerative disorder deteriorating motor coordination in affected individuals. Recent research has highlighted the use of lentiviral vectors (LVs) for selective delivery of neuroprotective substance for complete halt of disease progression in PD. LVs have the ability to infect both dividing and non-dividing cells along with non-encoding capability of viral protein that might elicit an immune response. This review will mainly focus on understanding the basic mechanism of action of LVs and its therapeutic aid in PD.
Collapse
Affiliation(s)
- Violina Kakoty
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Sarathlal K C
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Sunil Kumar Dubey
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India; R&D Healthcare Division, Emami Ltd, Kolkatta, India
| | - Chih Hao Yang
- Department of Pharmacology, Taipei Medical University, Taiwan
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India.
| |
Collapse
|
9
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|