1
|
Ragni E, Piccolo S, De Luca P, Taiana M, Grieco G, de Girolamo L. Housekeeping Gene Stability in Adipose Mesenchymal Stromal Cells Cultivated in Serum/Xeno-Free Media for Osteoarthritis. Cells 2024; 13:167. [PMID: 38247858 PMCID: PMC10814848 DOI: 10.3390/cells13020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Among the available therapeutics for the conservative treatment of osteoarthritis (OA), mesenchymal stromal cells (MSCs)-based products appear to be the most promising. Alongside minimally manipulated cell-based orthobiologics, where MSCs are the engine of the bioactive properties, cell expansion under good manufacturing practice (GMP) settings is actively studied to obtain clinical-grade pure populations able to concentrate the biological activity. One of the main characteristics of GMP protocols is the use of clinical-grade reagents, including the recently released serum-free/xeno-free (SFM/XFM) synthetic media, which differ significantly from the traditional reagents like those based on fetal bovine serum (FBS). As SFM/XFM are still poorly characterized, a main lack is the notion of reliable housekeeping genes (HKGs) for molecular studies, either standalone or in combination with standard conditions. Indeed, the aim of this work was to test the stability of five commonly used HKGs (ACTB, EF1A, GAPDH, RPLP0, and TBP) in adipose-derived MSCs (ASCs) cultivated in two commercially available SFM/XFM and to compare outcomes with those obtained in FBS. Four different applets widely recognized by the scientific community (NormFinder, geNorm, comparative ΔCt method, and BestKeeper) were used and data were merged to obtain a final stability order. The analysis showed that cells cultured in both synthetic media had a similar ranking for HKGs stability (GAPDH being best), albeit divergent from FBS expanded products (EF1A at top). Moreover, it was possible to identify specific HKGs for side by side studies, with EF1A/TBP being the most reliable normalizers for single SFM/XFM vs. FBS cultured cells and TBP the best one for a comprehensive analysis of all samples. In addition, stability of HKGs was donor-dependent. The normalization effect on selected genes coding for factors known to be involved in OA pathology, and whose amount should be carefully considered for the selection of the most appropriate MSC-based treatment, showed how HKGs choice might affect the perceived amount for the different media or donor. Overall, this work confirms the impact of SFM/XFM conditions on HKGs stability performance, which resulted similarly for both synthetic media analyzed in the study.
Collapse
Affiliation(s)
| | | | - Paola De Luca
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157 Milano, Italy; (E.R.); (S.P.); (M.T.); (G.G.); (L.d.G.)
| | | | | | | |
Collapse
|
2
|
Zhang M, Zhao Y, Wang L, Zheng Y, Yu H, Dong X, He W, Yin Z, Wang Z. Study of the biological characteristics of human umbilical cord mesenchymal stem cells after long-time cryopreservation. Cell Tissue Bank 2022; 23:739-752. [PMID: 35066739 PMCID: PMC9675661 DOI: 10.1007/s10561-021-09973-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/21/2021] [Indexed: 01/22/2023]
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) have considerable potential in cell therapy. Cryopreservation represents the gold standard in cell storage, but its effect on hUC-MSCs is still not well understood. The aim of this study was to investigate the effect of one year of cryopreservation and thawing on the biological characteristics of hUC-MSCs from the same donors. Fresh hUC-MSCs were cryopreserved in commercial freezing medium (serum-free CellBanker 2) at passage 2. After one year of cryopreservation, the hUC-MSCs were thawed and subcultured to passage 4. The comparison was performed in terms of followings: cell count, viability, morphology, proliferation capacity, differentiation potential and chromosomal stability. The total cell count and viability of hUC-MSCs before and after one year of cryopreservation were 1 × 107 and 96.34% and 0.943 × 107 and 93.81%, respectively. Cryopreserved and fresh hUC-MSCs displayed a similar cell doubling times, expressed the markers CD73, CD90, CD105 and were negative for the markers CD34, CD45, and HLA-DR. Karyotypes were found to be normal after one year of cryopreservation. The trilineage differentiation properties were maintained after cryopreservation. However, when compared to freshly isolated hUC-MSCs from the same donor, cryopreserved hUC-MSCs exhibited decreased expression of osteogenesis- and chondrogenesis-related genes including Runx2, Sox9, and Col1a1, and increased expression of adipogenesis-related genes. These results demonstrated that cryopreservation did not affect cell morphology, surface marker expression, cell viability, proliferative capacity, or chromosomal stability. However, the osteogenic and chondrogenic differentiation capacities of cryopreserved hUC-MSCs were slightly reduced compared with those of fresh cells from the same donor.
Collapse
Affiliation(s)
- Mingqi Zhang
- Department of Stem Cell Center of Precision Medicine Innovation Institute, He University, Hunnan District, No.66 Sishui Street, Shenyang, 110163, China
- Liaoning Key Lab of Ophthalmic Stem Cells, He University, Shenyang, China
- Liaoning Province Ophthalmic Stem Cell Clinical Application Research Center, He Eye Hospital, Shenyang, China
| | - Yan Zhao
- Department of Stem Cell Center of Precision Medicine Innovation Institute, He University, Hunnan District, No.66 Sishui Street, Shenyang, 110163, China
- Liaoning Key Lab of Ophthalmic Stem Cells, He University, Shenyang, China
| | - Le Wang
- Department of Stem Cell Center of Precision Medicine Innovation Institute, He University, Hunnan District, No.66 Sishui Street, Shenyang, 110163, China
- Liaoning Key Lab of Ophthalmic Stem Cells, He University, Shenyang, China
| | - Yuqiang Zheng
- Department of Stem Cell Center of Precision Medicine Innovation Institute, He University, Hunnan District, No.66 Sishui Street, Shenyang, 110163, China
- Liaoning Key Lab of Ophthalmic Stem Cells, He University, Shenyang, China
| | - Hui Yu
- Department of Stem Cell Center of Precision Medicine Innovation Institute, He University, Hunnan District, No.66 Sishui Street, Shenyang, 110163, China
- Liaoning Key Lab of Ophthalmic Stem Cells, He University, Shenyang, China
| | - Xiaoming Dong
- Department of Stem Cell Center of Precision Medicine Innovation Institute, He University, Hunnan District, No.66 Sishui Street, Shenyang, 110163, China
- Liaoning Key Lab of Ophthalmic Stem Cells, He University, Shenyang, China
| | - Wei He
- Department of Stem Cell Center of Precision Medicine Innovation Institute, He University, Hunnan District, No.66 Sishui Street, Shenyang, 110163, China
- Liaoning Key Lab of Ophthalmic Stem Cells, He University, Shenyang, China
- Liaoning Province Ophthalmic Stem Cell Clinical Application Research Center, He Eye Hospital, Shenyang, China
| | - Zhengqin Yin
- Department of Stem Cell Center of Precision Medicine Innovation Institute, He University, Hunnan District, No.66 Sishui Street, Shenyang, 110163, China.
| | - Zhuoshi Wang
- Department of Stem Cell Center of Precision Medicine Innovation Institute, He University, Hunnan District, No.66 Sishui Street, Shenyang, 110163, China.
- Liaoning Key Lab of Ophthalmic Stem Cells, He University, Shenyang, China.
| |
Collapse
|