1
|
Ghasempour A, Dehghan H, Mahmoudi M, Lavi Arab F. Biomimetic scaffolds loaded with mesenchymal stem cells (MSCs) or MSC-derived exosomes for enhanced wound healing. Stem Cell Res Ther 2024; 15:406. [PMID: 39522032 PMCID: PMC11549779 DOI: 10.1186/s13287-024-04012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Since wound healing is one of the most important medical challenges and common dressings have not been able to manage this challenge well today, efforts have been increased to achieve an advanced dressing. Mesenchymal stem cells and exosomes derived from them have shown high potential in healing and regenerating wounds due to their immunomodulatory, anti-inflammatory, immunosuppressive, and high regenerative capacities. However, challenges such as the short life of these cells, the low durability of these cells in the wound area, and the low stability of exosomes derived from them have resulted in limitations in their use for wound healing. Nowadays, different scaffolds are considered suitable biomaterials for wound healing. These scaffolds are made of natural or synthetic polymers and have shown promising potential for an ideal dressing that does not have the disadvantages of common dressings. One of the strategies that has attracted much attention today is using these scaffolds for seeding and delivering MSCs and their exosomes. This combined strategy has shown a high potential in enhancing the shelf life of cells and increasing the stability of exosomes. In this review, the combination of different scaffolds with different MSCs or their exosomes for wound healing has been comprehensively discussed.
Collapse
Affiliation(s)
- Alireza Ghasempour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Huang H, Song X, Zhang J, Fan Y, Kong M, Zhang L, Hou H. Novel collagen gradient membranes with multiphasic structures: Preparation, characterization, and biocompatibility. Colloids Surf B Biointerfaces 2024; 243:114146. [PMID: 39173311 DOI: 10.1016/j.colsurfb.2024.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Scaffolds with multiphasic structures are considered to be superior for guided tissue regeneration. Two types of tilapia skin collagen gradient membranes (stepped gradient and linear gradient) with multiphasic structures were prepared by controlling the collagen concentrations and the freezing rates. The results revealed that collagen gradient membranes were more capable of guiding tissue regeneration compared to homogeneous membranes. These two gradient membranes featured a dense outer layer and a loose inner layer, with good mechanical properties as indicated by tensile strengths of more than 250 Kpa and porosities exceeding 85 %. Additionally, these membranes also showed good hydrophilicity and water absorption, with an inner layer contact angle of less than 91° and a water absorption ratio greater than 40 times. Furthermore, the multiphasic scaffolds were proved to be biocompatible by the acute toxicity assay, the intradermal irritation test and so on. Gradient membranes could effectively promote the adhesion and proliferation of fibroblasts and osteoblasts, through elevating the TGF-β/Smad signaling pathway by TGF-β and Smads, and activating the Wnt/β-catenin signaling pathway by LRP5 and β-catenin, similar to homogenous membranes. Therefore, collagen gradient membranes from tilapia skin show important application value in guiding tissue regeneration.
Collapse
Affiliation(s)
- Huilin Huang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Xue Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Jiangjiang Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yan Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; College of Marine Life Sciences, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| | - Ming Kong
- College of Marine Life Sciences, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Li Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China.
| |
Collapse
|
3
|
Zhang J, Mohd Said F, Daud NFS, Jing Z. Present status and application prospects of green chitin nanowhiskers: A comprehensive review. Int J Biol Macromol 2024; 278:134235. [PMID: 39079565 DOI: 10.1016/j.ijbiomac.2024.134235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024]
Abstract
Petrochemical resources are non-renewable, which has impeded the development of synthetic polymers. The poor degradability of synthetic polymers poses substantial environmental pressure. Additionally, the high cost of synthetic biopolymers with excellent degradation performance limits their widespread application. Thus, it is crucial to seek green, sustainable, low-cost polymers as alternatives to petrochemical-based synthetic polymers and synthetic biopolymers. Chitin is a natural and renewable biopolymer discovered in crustacean shells, insect exoskeletons, and fungal cell walls. Chitin chains consist of crystalline and amorphous regions. Note that various treatments can be employed to remove the amorphous region, enhancing the crystallinity of chitin. Chitin nanowhiskers are a high crystallinity nanoscale chitin product with a high aspect ratio, a large surface area, adjustable surface morphology, and biocompatibility. They discover widespread applications in biomedicine, environmental treatment, food packaging, and biomaterials. Various methods can be utilized for preparing chitin nanowhiskers, including chemical, ionic liquids, deacetylation, and mechanical methods. However, developing an environmentally friendly preparation process remains a big challenge for expanding their applications in different materials and large-scale production. This article comprehensively analyzes chitin nanowhiskers' preparation strategies and their drawbacks. It also highlights the extensive application in different materials and various fields, besides the potential for commercial application.
Collapse
Affiliation(s)
- Juanni Zhang
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Nur Fathin Shamirah Daud
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Zhanxin Jing
- College of Chemistry and Environment, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, China
| |
Collapse
|