1
|
Li Z, Li J, Dai S, Liu R, Guo Q, Liu F. Research Status and Trends in Periodontal Ligament Stem Cells: A Bibliometric Analysis over the Past Two Decades. Stem Cells Int 2024; 2024:9955136. [PMID: 39372680 PMCID: PMC11452234 DOI: 10.1155/2024/9955136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 10/08/2024] Open
Abstract
Objective Currently, the summaries of research on periodontal ligament stem cells (PDLSCs) are mainly reviews, and the systematic evaluation of all relevant studies is lacking. The aim of our study was to reveal the research status and developmental trends of PDLSCs using bibliometric analyses. Methods Publications on PDLSC from 2004 to 2023 in the PubMed database were searched and then screened according to certain inclusion and exclusion criteria. Two researchers browsed the included papers and recorded information such as the research type and research model. The VOSviewer software was used to analyze the distribution of authors, journals, and institutions. The contents and directions of PDLSC research were summarized by analyzing high-frequency keywords. The CiteSpace software was used to monitor burst words, determine hot factors, and indicate developmental trends. Results During the past two decades, the number of studies on PDLSCs increased. China published the most related papers. The primary type of article was basic research. Among core journals, the Journal of Periodontal Research had the highest number of publications. The Fourth Military Medical University (China) was leading in the number of articles on PDLSCs. Research topics mainly included mechanism of periodontal diseases, tissue engineering and regeneration, biological characteristics of PDLSCs, and comparison with other stem cells. Infectious inflammation and mechanical stimulation were important pathological conditions and research topics. Conclusion The research of PDLSCs is still in a rapid development stage. Our study provides new insights into the current research status and future trend in this field.
Collapse
Affiliation(s)
- Zhengyang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Jinyi Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Shanshan Dai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Ruirui Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of ProsthodonticsCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Qingyu Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| | - Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
- Department of Pediatric DentistryCollege of StomatologyXi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
2
|
Zhao JZ, Ge YY, Xue LF, Xu YX, Yue J, Li C, Xiao WL. CA1 Modulates the Osteogenic Differentiation of Dental Follicle Stem Cells by Activating the BMP Signaling Pathway In Vitro. Tissue Eng Regen Med 2024; 21:855-865. [PMID: 38652220 PMCID: PMC11286914 DOI: 10.1007/s13770-024-00642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Carbonic anhydrase 1 (CA1) has been found to be involved in osteogenesis and osteoclast in various human diseases, but the molecular mechanisms are not completely understood. In this study, we aim to use siRNA and lentivirus to reduce or increase the expression of CA1 in Dental follicle stem cells (DFSCs), in order to further elucidate the role and mechanism of CA1 in osteogenesis, and provide better osteogenic growth factors and stem cell selection for the application of bone tissue engineering in alveolar bone fracture transplantation. METHODS The study used RNA interference and lentiviral vectors to manipulate the expression of the CA1 gene in DFSCs during in vitro osteogenic induction. The expression of osteogenic marker genes was evaluated and changes in CA1, alkaline phosphatase (ALP), Runt-related transcription factor 2 (RUNX2), and Bone morphogenetic proteins (BMP2) were measured using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB). The osteogenic effect was assessed through Alizarin Red staining. RESULTS The mRNA and protein expression levels of CA1, ALP, RUNX2, and BMP2 decreased distinctly in the si-CA1 group than other groups (p < 0.05). In the Lentivirus-CA1 (LV-CA1) group, the mRNA and protein expressions of CA1, ALP, RUNX2, and BMP2 were amplified to varying degrees than other groups (p < 0.05). Apart from CA1, BMP2 (43.01%) and ALP (36.69%) showed significant upregulation (p < 0.05). Alizarin red staining indicated that the LV-CA1 group produced more calcified nodules than other groups, with a higher optical density (p < 0.05), and the osteogenic effect was superior. CONCLUSIONS CA1 can impact osteogenic differentiation via BMP related signaling pathways, positioning itself upstream in osteogenic signaling pathways, and closely linked to osteoblast calcification and ossification processes.
Collapse
Affiliation(s)
- Jin-Ze Zhao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Ying-Ying Ge
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Ling-Fa Xue
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yao-Xiang Xu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jin Yue
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Cong Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wen-Lin Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266023, China.
| |
Collapse
|
3
|
Xu K, Zhang Q, Zhu D, Jiang Z. Hydrogels in Gene Delivery Techniques for Regenerative Medicine and Tissue Engineering. Macromol Biosci 2024; 24:e2300577. [PMID: 38265144 DOI: 10.1002/mabi.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Hydrogels are 3D networks swollen with water. They are biocompatible, strong, and moldable and are emerging as a promising biomedical material for regenerative medicine and tissue engineering to deliver therapeutic genes. The excellent natural extracellular matrix simulation properties of hydrogels enable them to be co-cultured with cells or enhance the expression of viral or non-viral vectors. Its biocompatibility, high strength, and degradation performance also make the action process of carriers in tissues more ideal, making it an ideal biomedical material. It has been shown that hydrogel-based gene delivery technologies have the potential to play therapy-relevant roles in organs such as bone, cartilage, nerve, skin, reproductive organs, and liver in animal experiments and preclinical trials. This paper reviews recent articles on hydrogels in gene delivery and explains the manufacture, applications, developmental timeline, limitations, and future directions of hydrogel-based gene delivery techniques.
Collapse
Affiliation(s)
- Kexing Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qinmeng Zhang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Danji Zhu
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhiwei Jiang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
4
|
Luo X, Niu J, Su G, Zhou L, Zhang X, Liu Y, Wang Q, Sun N. Research progress of biomimetic materials in oral medicine. J Biol Eng 2023; 17:72. [PMID: 37996886 PMCID: PMC10668381 DOI: 10.1186/s13036-023-00382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023] Open
Abstract
Biomimetic materials are able to mimic the structure and functional properties of native tissues especially natural oral tissues. They have attracted growing attention for their potential to achieve configurable and functional reconstruction in oral medicine. Though tremendous progress has been made regarding biomimetic materials, significant challenges still remain in terms of controversy on the mechanism of tooth tissue regeneration, lack of options for manufacturing such materials and insufficiency of in vivo experimental tests in related fields. In this review, the biomimetic materials used in oral medicine are summarized systematically, including tooth defect, tooth loss, periodontal diseases and maxillofacial bone defect. Various theoretical foundations of biomimetic materials research are reviewed, introducing the current and pertinent results. The benefits and limitations of these materials are summed up at the same time. Finally, challenges and potential of this field are discussed. This review provides the framework and support for further research in addition to giving a generally novel and fundamental basis for the utilization of biomimetic materials in the future.
Collapse
Affiliation(s)
- Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Jiayue Niu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Guanyu Su
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Xue Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ying Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ningning Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China.
| |
Collapse
|
5
|
Chang YT, Lai CC, Lin DJ. Collagen Scaffolds Laden with Human Periodontal Ligament Fibroblasts Promote Periodontal Regeneration in SD Rat Model. Polymers (Basel) 2023; 15:2649. [PMID: 37376295 DOI: 10.3390/polym15122649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Periodontitis, a chronic inflammatory disease caused by microbial communities carrying pathogens, leads to the loss of tooth-supporting tissues and is a significant contributor to tooth loss. This study aims to develop a novel injectable cell-laden hydrogel consisted of collagen (COL), riboflavin, and a dental light-emitting diode (LED) photo-cross-linking process for periodontal regeneration. Utilizing α-SMA and ALP immunofluorescence markers, we confirmed the differentiation of human periodontal ligament fibroblasts (HPLFs) into myofibroblasts and preosteoblasts within collagen scaffolds in vitro. Twenty-four rats with three-wall artificial periodontal defects were divided into four groups, Blank, COL_LED, COL_HPLF, and COL_HPLF_LED, and histomorphometrically assessed after 6 weeks. Notably, the COL_HPLF_LED group showed less relative epithelial downgrowth (p < 0.01 for Blank, p < 0.05 for COL_LED and COL_HPLF), and the relative residual bone defect was significantly reduced in the COL_HPLF_LED group compared to the Blank and the COL_LED group (p < 0.05). The results indicated that LED photo-cross-linking collagen scaffolds possess sufficient strength to withstand the forces of surgical process and biting, providing support for HPLF cells embedded within them. The secretion of cells is suggested to promote the repair of adjacent tissues, including well-oriented periodontal ligament and alveolar bone regeneration. The approach developed in this study demonstrates clinical feasibility and holds promise for achieving both functional and structural regeneration of periodontal defects.
Collapse
Affiliation(s)
- Yi-Tao Chang
- Graduate Institute of Clinical Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan
- School of Dentistry, College of Dentistry, China Medical University, Taichung 404, Taiwan
| | - Chuan-Ching Lai
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung 413, Taiwan
- Department of Physical Therapy, Asia University, Taichung 413, Taiwan
| | - Dan-Jae Lin
- School of Dentistry, College of Dentistry, China Medical University, Taichung 404, Taiwan
- Department of Biomedical Engineering, College of Biomedical Engineering, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
6
|
Yang C, Du XY, Luo W. Clinical application prospects and transformation value of dental follicle stem cells in oral and neurological diseases. World J Stem Cells 2023; 15:136-149. [PMID: 37181000 PMCID: PMC10173814 DOI: 10.4252/wjsc.v15.i4.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Since dental pulp stem cells (DPSCs) were first reported, six types of dental SCs (DSCs) have been isolated and identified. DSCs originating from the craniofacial neural crest exhibit dental-like tissue differentiation potential and neuro-ectodermal features. As a member of DSCs, dental follicle SCs (DFSCs) are the only cell type obtained at the early developing stage of the tooth prior to eruption. Dental follicle tissue has the distinct advantage of large tissue volume compared with other dental tissues, which is a prerequisite for obtaining a sufficient number of cells to meet the needs of clinical applications. Furthermore, DFSCs exhibit a significantly higher cell proliferation rate, higher colony-formation capacity, and more primitive and better anti-inflammatory effects than other DSCs. In this respect, DFSCs have the potential to be of great clinical significance and translational value in oral and neurological diseases, with natural advantages based on their origin. Lastly, cryopreservation preserves the biological properties of DFSCs and enables them to be used as off-shelf products for clinical applications. This review summarizes and comments on the properties, application potential, and clinical transformation value of DFSCs, thereby inspiring novel perspectives in the future treatment of oral and neurological diseases.
Collapse
Affiliation(s)
- Chao Yang
- Research and Development Department, Shenzhen Uni-medica Technology Co., Ltd, Shenzhen 518051, Guangdong Province, China
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Xin-Ya Du
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Wen Luo
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
7
|
Lin X, Li Q, Hu L, Jiang C, Wang S, Wu X. Apical Papilla Regulates Dental Follicle Fate via the OGN-Hh Pathway. J Dent Res 2023; 102:431-439. [PMID: 36515316 DOI: 10.1177/00220345221138517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Root apical complex, including Hertwig's epithelial root sheath, apical papilla, and dental follicle (DF), is the germinal center of root development, wherein the DF constantly develops into periodontal tissue. However, whether DF development is regulated by the adjacent apical papilla remains largely unknown. In this study, we employed a transwell coculture system and found that stem cells from the apical papilla (SCAPs) inhibit the differentiation and maintain the stemness of dental follicle stem cells (DFSCs). Meanwhile, partial SCAP differentiation markers were upregulated after DFSC coculture. High-throughput RNA sequencing revealed that the Hedgehog (Hh) pathway was significantly downregulated in DFSCs cocultured with SCAPs. Upregulation or downregulation of the Hh pathway can respectively activate or inhibit the multidirectional differentiation of DFSCs. Osteoglycin (OGN) (previously known as mimecan) is highly expressed in the dental papilla, similarly to Hh pathway factors. By secreting OGN, SCAP regulated the stemness and multidirectional differentiation of DFSCs via the OGN-Hh pathway. Finally, Ogn-/- mice were established using the CRISPR/Cas9 system. We found that the root length growth rate was accelerated during root development from PN0 to PN30 in Ogn-/- mice. Moreover, the hard tissues (including dentin and cementum) of the root in Ogn-/- mice were thicker than those in wild-type mice. These phenotypes were likely due to Hh pathway activation and the increased cell proliferation and differentiation in both the apical papilla and DF. The current work elucidates the molecular regulation of early periodontal tissue development, providing a theoretical basis for future research on tooth root biology and periodontal tissue regeneration.
Collapse
Affiliation(s)
- X Lin
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Q Li
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - L Hu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - C Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
| | - S Wang
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - X Wu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Wang D, Qi Y, Wang Z, Guo A, Xu Y, Zhang Y. Recent Advances in Animal Models, Diagnosis, and Treatment of Temporomandibular Joint Osteoarthritis. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:62-77. [PMID: 35994388 DOI: 10.1089/ten.teb.2022.0065] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a gradual degenerative jaw joint condition. Until recent years, TMJOA is still relatively unrecognized and ineffective to be treated. Appropriate animal models with reliable detection methods can help researchers understand the pathophysiology of TMJOA and find therapeutic options. In this study, we summarized common animal models of TMJOA created by chemical, surgical, mechanical, and genetical approaches. The relevant pathological symptoms and induction mechanisms were outlined. In addition, different pathological indicators, furthermore, emerging therapeutic regimens, such as intra-articular drug delivery and tissue engineering-based approaches to treat TMJOA based on these animal models, were summarized and updated. Understanding the physiology and pathogenesis of the TMJOA, together using various ways to diagnose the TMJOA, were elaborated, including imaging techniques, molecular techniques for detecting inflammatory cytokines, histochemical staining, and histomorphometry measures. A more reliable diagnosis will enable the development of new prevention and more effective treatment strategies and thereby improve the quality of life of TMJOA patients. Impact statement Temporomandibular joint osteoarthritis (TMJOA) affects 8 to 16 percent of the population worldwide. However, TMJOA is still relatively unrecognized and ineffective to be treated in the clinic. Appropriate animal models with reliable diagnostic methods can help researchers understand the pathophysiology of TMJOA and find therapeutic options. We herein summarized common animal models of TMJOA and various ways to diagnose the TMJOA. More importantly, emerging therapeutic regimens to treat TMJOA based on these animal models were summarized. With the aid of strategies listed, more effective treatment strategies will be developed and thereby improve the life quality of TMJOA patients.
Collapse
Affiliation(s)
- Dongyun Wang
- Stomatological Center of Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, China
| | - Yajie Qi
- Stomatological Center of Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, China.,Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, China
| | - Zhubing Wang
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, China
| | - Anyun Guo
- Department of Joint Surgery, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Yingxin Xu
- Stomatological Center of Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen, China
| | - Yang Zhang
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Chen Y, Wang X, Wu Z, Jia S, Wan M. Epigenetic regulation of dental-derived stem cells and their application in pulp and periodontal regeneration. PeerJ 2023; 11:e14550. [PMID: 36620748 PMCID: PMC9817962 DOI: 10.7717/peerj.14550] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/20/2022] [Indexed: 01/05/2023] Open
Abstract
Dental-derived stem cells have excellent proliferation ability and multi-directional differentiation potential, making them an important research target in tissue engineering. An increasing number of dental-derived stem cells have been discovered recently, including dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHEDs), stem cells from apical papilla (SCAPs), dental follicle precursor cells (DFPCs), and periodontal ligament stem cells (PDLSCs). These stem cells have significant application prospects in tissue regeneration because they are found in an abundance of sources, and they have good biocompatibility and are highly effective. The biological functions of dental-derived stem cells are regulated in many ways. Epigenetic regulation means changing the expression level and function of a gene without changing its sequence. Epigenetic regulation is involved in many biological processes, such as embryonic development, bone homeostasis, and the fate of stem cells. Existing studies have shown that dental-derived stem cells are also regulated by epigenetic modifications. Pulp and periodontal regeneration refers to the practice of replacing damaged pulp and periodontal tissue and restoring the tissue structure and function under normal physiological conditions. This treatment has better therapeutic effects than traditional treatments. This article reviews the recent research on the mechanism of epigenetic regulation of dental-derived stem cells, and the core issues surrounding the practical application and future use of pulp and periodontal regeneration.
Collapse
Affiliation(s)
- Yuyang Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiayi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Shiyu Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Mian Wan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
10
|
Zhang Z, Warner KA, Mantesso A, Nör JE. PDGF-BB signaling via PDGFR-β regulates the maturation of blood vessels generated upon vasculogenic differentiation of dental pulp stem cells. Front Cell Dev Biol 2022; 10:977725. [PMID: 36340037 PMCID: PMC9627550 DOI: 10.3389/fcell.2022.977725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
A functional vascular network requires that blood vessels are invested by mural cells. We have shown that dental pulp stem cells (DPSC) can undergo vasculogenic differentiation, and that the resulting vessels anastomize with the host vasculature and become functional (blood carrying) vessels. However, the mechanisms underlying the maturation of DPSC-derived blood vessels remains unclear. Here, we performed a series of studies to understand the process of mural cell investment of blood vessels generated upon vasculogenic differentiation of dental pulp stem cells. Primary human DPSC were co-cultured with primary human umbilical artery smooth muscle cells (HUASMC) in 3D gels in presence of vasculogenic differentiation medium. We observed DPSC capillary sprout formation and SMC recruitment, alignment and remodeling that resulted in complex vascular networks. While HUASMC enhanced the number of capillary sprouts and stabilized the capillary network when co-cultured with DPSC, HUASMC by themselves were unable to form capillary sprouts. In vivo, GFP transduced human DPSC seeded in biodegradable scaffolds and transplanted into immunodeficient mice generated functional human blood vessels invested with murine smooth muscle actin (SMA)-positive, GFP-negative cells. Inhibition of PDGFR-β signaling prevented the SMC investment of DPSC-derived capillary sprouts in vitro and of DPSC-derived blood vessels in vivo. In contrast, inhibition of Tie-2 signaling did not have a significant effect on the SMC recruitment in DPSC-derived vascular structures. Collectively, these results demonstrate that PDGF-BB signaling via PDGFR-β regulates the process of maturation (mural investment) of blood vessels generated upon vasculogenic differentiation of human dental pulp stem cells.
Collapse
Affiliation(s)
- Zhaocheng Zhang
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Kristy A. Warner
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Andrea Mantesso
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Jacques E. Nör
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, United States
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Nel S, Durandt C, Murdoch C, Pepper MS. Determinants of Dental Pulp Stem Cell Heterogeneity. J Endod 2022; 48:1232-1240. [PMID: 35809811 DOI: 10.1016/j.joen.2022.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The aim of this review is to provide a narrative review on the determinants of dental pulp stem cell (DPSC) heterogeneity that may affect the regenerative properties of these cells. METHODS PubMed, Scopus and Medline (Ovid) literature searches were done on human dental pulp stem cell (hDPSC) heterogeneity. The focus was on human dental pulp stem cells (hDPSCs) with a primary focus on DPSC heterogeneity. RESULTS DPSCs display significant heterogeneity as illustrated by the various subpopulations reported, including differences in proliferation and differentiation capabilities and the impact of various intrinsic and extrinsic factors. CONCLUSIONS The lack of consistent and reliable results in the clinical setting may be due to the heterogeneous nature of DPSC populations. Standardization in isolation techniques and in criteria to characterize DPSCs should lead to less variability in results reported and improve comparison of findings between studies. Single-cell RNA sequencing holds promise in elucidating DPSC heterogeneity and may contribute to the establishment of standardized techniques.
Collapse
Affiliation(s)
- Sulette Nel
- Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine (ICMM), Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Candice Murdoch
- Institute for Cellular and Molecular Medicine (ICMM), Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine (ICMM), Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, South Africa
| |
Collapse
|
12
|
Yuan Y, Zhang X, Zhan Y, Tang S, Deng P, Wang Z, Li J. Adipose-derived stromal/stem cells are verified to be potential seed candidates for bio-root regeneration in three-dimensional culture. Stem Cell Res Ther 2022; 13:234. [PMID: 35659736 PMCID: PMC9166419 DOI: 10.1186/s13287-022-02907-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Bio-root regeneration is a promising treatment for tooth loss. It has been reported that dental-derived stem cells are effective seed cells for bio-root construction, but further applications are limited by their few sources. Human adipose tissues have a wide range of sources and numerous studies have confirmed the ability of adipose-derived stromal/stem cells (ASCs) in regenerative medicine. In the current study, the odontogenic capacities of ASCs were compared with dental-derived stem cells including dental follicle cells (DFCs), and stem cells from human exfoliated deciduous teeth (SHEDs). METHODS The biological characteristics of ASCs, DFCs, and SHEDs were explored in vitro. Two-dimensional (2D) and three-dimensional (3D) cultures were compared in vitro. Odontogenic characteristics of porcine-treated dentin matrix (pTDM) induced cells under a 3D microenvironment in vitro were compared. The complexes (cell/pTDM) were transplanted subcutaneously into nude mice to verify regenerative potential. RNA sequencing (RNA-seq) was used to explore molecular mechanisms of different seed cells in bio-root regeneration. RESULTS 3D culture was more efficient in constructing bio-root complexes. ASCs exhibited good biological characteristics similar to dental-derived stem cells in vitro. Besides, pTDM induced ASCs presented odontogenic ability similar to dental-derived stem cells. Furthermore, 3D cultured ASCs/pTDM complex promoted regeneration of dentin-like, pulp-like, and periodontal fiber-like tissues in vivo. Analysis indicated that PI3K-Akt, VEGF signaling pathways may play key roles in the process of inducing ASCs odontogenic differentiation by pTDM. CONCLUSIONS ASCs are potential seed cells for pTDM-induced bio-root regeneration, providing a basis for further research and application.
Collapse
Affiliation(s)
- Yu Yuan
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Yuzhen Zhan
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Song Tang
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Pingmeng Deng
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People's Republic of China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China.
| |
Collapse
|
13
|
Hypoxia Induces DPSC Differentiation versus a Neurogenic Phenotype by the Paracrine Mechanism. Biomedicines 2022; 10:biomedicines10051056. [PMID: 35625792 PMCID: PMC9138575 DOI: 10.3390/biomedicines10051056] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
As previously described by several authors, dental pulp stem cells (DPSCs), when adequately stimulated, may acquire a neuronal-like phenotype acting as a favorable source of stem cells in the generation of nerves. Besides, it is known that hypoxia conditioning is capable of stimulating cell differentiation as well as survival and self-renewal, and that multiple growth factors, including Epidermal Growth factor (EGF) and basic fibroblast growth factor (bFGF), are often involved in the induction of the neuronal differentiation of progenitor cells. In this work, we investigated the role of hypoxia in the commitment of DPSCs into a neuronal phenotype. These cells were conditioned with hypoxia (O2 1%) for 5 and 16 days; subsequently, we analyzed the proliferation rate and morphology, and tested the cells for neural and stem markers. Moreover, we verified the possible autocrine/paracrine role of DPSCs in the induction of neural differentiation by comparing the secretome profile of the hypoxic and normoxic conditioned media (CM). Our results showed that the hypoxia-mediated DPSC differentiation was time dependent. Moreover, conditioned media (CM derived from DPSCs stimulated by hypoxia were able, in turn, to induce the neural differentiation of SH-SY5Y neuroblastoma cells and undifferentiated DPSCs. In conclusion, under the herein-mentioned conditions, hypoxia seems to favor the differentiation of DPSCs into neuron-like cells. In this way, we confirm the potential clinical utility of differentiated neuronal DPSCs, and we also suggest the even greater potential of CM-derived-hypoxic DPSCs that could more readily be used in regenerative therapies.
Collapse
|
14
|
Novello S, Tricot-Doleux S, Novella A, Pellen-Mussi P, Jeanne S. Influence of Periodontal Ligament Stem Cell-Derived Conditioned Medium on Osteoblasts. Pharmaceutics 2022; 14:pharmaceutics14040729. [PMID: 35456563 PMCID: PMC9028528 DOI: 10.3390/pharmaceutics14040729] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSC) are involved in the regeneration of various missing or compromised periodontal tissues, including bone. MSC-derived conditioned medium (CM) has recently been explored as a favorable surrogate for stem cell therapy, as it is capable of producing comparable therapeutic effects. This study aimed to evaluate the influence of periodontal ligament stem cells (PDLSC)-CM on osteoblasts (OB) and its potential as a therapeutic tool for periodontal regeneration. Human PDLSC were isolated and characterized, and CM from these cells was collected. The presence of exosomes in the culture supernatant was observed by immunofluorescence and by transmission electron microscopy. CM was added to a cultured osteoblastic cell line (Saos-2 cells) and viability (MTT assay) and gene expression analysis (real-time PCR) were examined. A cell line derived from the periodontal ligament and showing all the characteristics of MSC was successfully isolated and characterized. The addition of PDLSC-CM to Saos-2 cells led to an enhancement of their proliferation and an increased expression of some osteoblastic differentiation markers, but this differentiation was not complete. Saos-2 cells were involved in the initial inflammation process by releasing IL-6 and activating COX2. The effects of PDLSC-CM on Saos-2 appear to arise from a cumulative effect of different effective components rather than a few factors present at high levels.
Collapse
Affiliation(s)
- Solen Novello
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
- Unité de Formation et de Recherche d’Odontologie, Université de Rennes, 35000 Rennes, France
- UF Parodontologie, Pôle d’Odontologie, Centre Hospitalier Universitaire de Rennes, 35000 Rennes, France
- Correspondence:
| | - Sylvie Tricot-Doleux
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
| | - Agnès Novella
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
| | - Pascal Pellen-Mussi
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
| | - Sylvie Jeanne
- ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Université de Rennes, 35000 Rennes, France; (S.T.-D.); (A.N.); (P.P.-M.); (S.J.)
- Unité de Formation et de Recherche d’Odontologie, Université de Rennes, 35000 Rennes, France
- UF Parodontologie, Pôle d’Odontologie, Centre Hospitalier Universitaire de Rennes, 35000 Rennes, France
| |
Collapse
|
15
|
Zhang Z, Oh M, Sasaki JI, Nör JE. Inverse and reciprocal regulation of p53/p21 and Bmi-1 modulates vasculogenic differentiation of dental pulp stem cells. Cell Death Dis 2021; 12:644. [PMID: 34168122 PMCID: PMC8225874 DOI: 10.1038/s41419-021-03925-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Dental pulp stem cells (DPSC) are capable of differentiating into vascular endothelial cells. Although the capacity of vascular endothelial growth factor (VEGF) to induce endothelial differentiation of stem cells is well established, mechanisms that maintain stemness and prevent vasculogenic differentiation remain unclear. Here, we tested the hypothesis that p53 signaling through p21 and Bmi-1 maintains stemness and inhibits vasculogenic differentiation. To address this hypothesis, we used primary human DPSC from permanent teeth and Stem cells from Human Exfoliated Deciduous (SHED) teeth as models of postnatal mesenchymal stem cells. DPSC seeded in biodegradable scaffolds and transplanted into immunodeficient mice generated mature human blood vessels invested with smooth muscle actin-positive mural cells. Knockdown of p53 was sufficient to induce vasculogenic differentiation of DPSC (without vasculogenic differentiation medium containing VEGF), as shown by increased expression of endothelial markers (VEGFR2, Tie-2, CD31, VE-cadherin), increased capillary sprouting in vitro; and increased DPSC-derived blood vessel density in vivo. Conversely, induction of p53 expression with small molecule inhibitors of the p53-MDM2 binding (MI-773, APG-115) was sufficient to inhibit VEGF-induced vasculogenic differentiation. Considering that p21 is a major downstream effector of p53, we knocked down p21 in DPSC and observed an increase in capillary sprouting that mimicked results observed when p53 was knocked down. Stabilization of ubiquitin activity was sufficient to induce p53 and p21 expression and reduce capillary sprouting. Interestingly, we observed an inverse and reciprocal correlation between p53/p21 and the expression of Bmi-1, a major regulator of stem cell self-renewal. Further, direct inhibition of Bmi-1 with PTC-209 resulted in blockade of capillary-like sprout formation. Collectively, these data demonstrate that p53/p21 functions through Bmi-1 to prevent the vasculogenic differentiation of DPSC.
Collapse
Affiliation(s)
- Zhaocheng Zhang
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Min Oh
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Jun-Ichi Sasaki
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Jacques E Nör
- Angiogenesis Research Laboratory, Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA.
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Song S, McConnell KW, Amores D, Levinson A, Vogel H, Quarta M, Rando TA, George PM. Electrical stimulation of human neural stem cells via conductive polymer nerve guides enhances peripheral nerve recovery. Biomaterials 2021; 275:120982. [PMID: 34214785 DOI: 10.1016/j.biomaterials.2021.120982] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023]
Abstract
Severe peripheral nerve injuries often result in permanent loss of function of the affected limb. Current treatments are limited by their efficacy in supporting nerve regeneration and behavioral recovery. Here we demonstrate that electrical stimulation through conductive nerve guides (CNGs) enhances the efficacy of human neural progenitor cells (hNPCs) in treating a sciatic nerve transection in rats. Electrical stimulation strengthened the therapeutic potential of NPCs by upregulating gene expression of neurotrophic factors which are critical in augmenting synaptic remodeling, nerve regeneration, and myelination. Electrically-stimulated hNPC-containing CNGs are significantly more effective in improving sensory and motor functions starting at 1-2 weeks after treatment than either treatment alone. Electrophysiology and muscle assessment demonstrated successful re-innervation of the affected target muscles in this group. Furthermore, histological analysis highlighted an increased number of regenerated nerve fibers with thicker myelination in electrically-stimulated hNPC-containing CNGs. The elevated expression of tyrosine kinase receptors (Trk) receptors, known to bind to neurotrophic factors, indicated the long-lasting effect from electrical stimulation on nerve regeneration and distal nerve re-innervation. These data suggest that electrically-enhanced stem cell-based therapy provides a regenerative rehabilitative approach to promote peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Shang Song
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly W McConnell
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle Amores
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Levinson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marco Quarta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Zibandeh N, Genc D, Ozgen Z, Duran Y, Goker K, Baris S, Ergun T, Akkoc T. Mesenchymal stem cells derived from human dental follicle modulate the aberrant immune response in atopic dermatitis. Immunotherapy 2021; 13:825-840. [PMID: 33955241 DOI: 10.2217/imt-2020-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Atopic dermatitis (AD) is an inflammatory cutaneous disorder. The advancements in the understanding of AD immunological pathogenesis have caused the development of therapies that suppress the dysregulated immune response. We aimed to evaluate the immunomodulatory effect of dental stem cells (dental follicle-mesenchymal stem cells [DF-MSCs]) on AD patients. Materials & methods: We investigated the immunoregulatory potential of DF-MSCs on T cell response in AD and compared them with psoriasis and healthy individuals and the underlying mechanisms. Results: DF-MSCs significantly reduced Fas, FasL and TNFR II frequency in T cells, increased naive T cell population while reducing memory T cell, decreased inflammatory cytokine levels and promoted Tregs frequency in the AD population. Conclusion: These results imply that DF-MSCs are modulating inflammation through decreasing T cell apoptosis, inducing Treg expansion and stabilizing cytokine levels.
Collapse
Affiliation(s)
- Noushin Zibandeh
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey.,Koc University Research Center for Translational Medicine, Koc University, Istanbul, Turkey
| | - Deniz Genc
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| | - Zuleyha Ozgen
- Department of Dermatology, Marmara University, Istanbul, Turkey
| | - Yazgul Duran
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| | - Kamil Goker
- Department of Oral & Maxillofacial Surgery, Marmara University, Istanbul, Turkey
| | - Safa Baris
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| | - Tulin Ergun
- Department of Dermatology, Marmara University, Istanbul, Turkey
| | - Tunc Akkoc
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| |
Collapse
|
18
|
Zhao Y, Xie L. An Update on Mesenchymal Stem Cell-Centered Therapies in Temporomandibular Joint Osteoarthritis. Stem Cells Int 2021; 2021:6619527. [PMID: 33868408 PMCID: PMC8035039 DOI: 10.1155/2021/6619527] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/20/2021] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease characterized by cartilage degeneration, disrupted subchondral bone remodeling, and synovitis, seriously affecting the quality of life of patients with chronic pain and functional disabilities. Current treatments for TMJOA are mainly symptomatic therapies without reliable long-term efficacy, due to the limited self-renewal capability of the condyle and the poorly elucidated pathogenesis of TMJOA. Recently, there has been increased interest in cellular therapies for osteoarthritis and TMJ regeneration. Mesenchymal stem cells (MSCs), self-renewing and multipotent progenitor cells, play a promising role in TMJOA treatment. Derived from a variety of tissues, MSCs exert therapeutic effects through diverse mechanisms, including chondrogenic differentiation; fibrocartilage regeneration; and trophic, immunomodulatory, and anti-inflammatory effects. Here, we provide an overview of the therapeutic roles of various tissue-specific MSCs in osteoarthritic TMJ or TMJ regenerative tissue engineering, with an additional focus on joint-resident stem cells and other cellular therapies, such as exosomes and adipose-derived stromal vascular fraction (SVF). Additionally, we summarized the updated pathogenesis of TMJOA to provide a better understanding of the pathological mechanisms of cellular therapies. Although limitations exist, MSC-centered therapies still provide novel, innovative approaches for TMJOA treatment.
Collapse
Affiliation(s)
- Yifan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Sordi MB, Cruz A, Fredel MC, Magini R, Sharpe PT. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112055. [PMID: 33947549 DOI: 10.1016/j.msec.2021.112055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
Bone tissue requires a range of complex mechanisms to allow the restoration of its structure and function. Bone healing is a signaling cascade process, involving cells secreting cytokines, growth factors, and pro-inflammatory factors in the defect site that will, subsequently, recruit surrounding stem cells to migrate, proliferate, and differentiate into bone-forming cells. Bioactive functional scaffolds could be applied to improve the bone healing processes where the organism is not able to fully regenerate the lost tissue. However, to be optimal, such scaffolds should act as osteoconductors - supporting bone-forming cells, providing nutrients, and sustaining the arrival of new blood vessels, and act as osteoinducers - slowly releasing signaling molecules that stimulate mesenchymal stem cells to differentiate and deposit mineralized bone matrix. Different compositions and shapes of scaffolds, cutting-edge technologies, application of signaling molecules to promote cell differentiation, and high-quality biomaterials are reaching favorable outcomes towards osteoblastic differentiation of stem cells in in vitro and in vivo researches for bone regeneration. Hydrogel-based biomaterials are being pointed as promising for bone tissue regeneration; however, despite all the research and high-impact scientific publications, there are still several challenges that prevent the use of hydrogel-based scaffolds for bone regeneration being feasible for their clinical application. Hence, the objective of this review is to consolidate and report, based on the current scientific literature, the approaches for bone tissue regeneration using bioactive hydrogel-based scaffolds, cell-based therapies, and three-dimensional bioprinting to define the key challenges preventing their use in clinical applications.
Collapse
Affiliation(s)
- Mariane B Sordi
- Research Center on Dental Implants, Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil; Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, SE1 9RT, UK.
| | - Ariadne Cruz
- Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil.
| | - Márcio C Fredel
- Ceramic and Composite Materials Research Group, Department of Mechanical Engineering, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil.
| | - Ricardo Magini
- Department of Odontology, Federal University of Santa Catarina, 88040-900 Florianopolis, SC, Brazil
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, SE1 9RT, UK.
| |
Collapse
|
20
|
Assis RIF, Feltran GDS, Silva MES, Palma ICDR, Rovai ES, Miranda TBD, Ferreira MR, Zambuzzi WF, Birbrair A, Andia DC, da Silva RA. Non-coding RNAs repressive role in post-transcriptional processing of RUNX2 during the acquisition of the osteogenic phenotype of periodontal ligament mesenchymal stem cells. Dev Biol 2021; 470:37-48. [PMID: 33152274 DOI: 10.1016/j.ydbio.2020.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells are candidates for therapeutic strategies in periodontal repair due to their osteogenic potential. In this study, we identified epigenetic markers during osteogenic differentiation, taking advantage of the individual pattern of mesenchymal cells of the periodontal ligament with high (h-PDLCs) and low (l-PDLCs) osteogenic capacity. We found that the involvement of non-coding RNAs in the regulation of the RUNX2 gene is strongly associated with high osteogenic potential. Moreover, we evaluated miRs and genes that encode enzymes to process miRs and their biogenesis. Our data show the high expression of the XPO5 gene, and miRs 7 and 22 observed in the l-PDLCs might be involved in acquiring osteogenic potential, suppressing RUNX2 gene expression. Further, an inversely proportional correlation between lncRNAs (HOTAIR and HOTTIP) and RUNX2 gene expression was observed in both l- and h-PDLCs, and it was also related to the distinct osteogenic phenotypes. Thus, our results indicate the low expression of XPO5 in h-PDLC might be the limiting point for blocking the miRs biogenesis, allowing the high gene expression of RUNX2. In accordance, the low expression of miRs, HOTAIR, and HOTTIP could be a prerequisite for increased osteogenic potential in h-PDLCs. These results will help us to better understand the underlying mechanisms of osteogenesis, considering the heterogeneity in the osteogenic potential of PDLCs that might be related to a distinct transcriptional profile of lncRNAs and the biogenesis machinery.
Collapse
Affiliation(s)
- Rahyza I F Assis
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Geórgia da S Feltran
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - São Paulo State University, 18618-970, Botucatu, São Paulo, Brazil
| | | | | | - Emanuel Silva Rovai
- Faculty of Dentistry, University of Taubaté, 12020-340, Taubaté, São Paulo, Brazil
| | | | - Marcel Rodrigues Ferreira
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - São Paulo State University, 18618-970, Botucatu, São Paulo, Brazil
| | - Willian F Zambuzzi
- Lab. of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP - São Paulo State University, 18618-970, Botucatu, São Paulo, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Denise C Andia
- School of Dentistry, Health Science Institute, Paulista University, 04026-002, São Paulo, Brazil.
| | - Rodrigo A da Silva
- Faculty of Dentistry, University of Taubaté, 12020-340, Taubaté, São Paulo, Brazil; Program in Environmental and Experimental Pathology, Paulista University, São Paulo, 04026-002, São Paulo, Brazil.
| |
Collapse
|
21
|
Comparison of 2- and 3-Dimensional Cultured Periodontal Ligament Stem Cells; a Pilot Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study compared the characteristics of periodontal ligament stem cells (PDLSCs) cultured using 3-dimensional (3D) versus conventional 2-dimensional (2D) methods. PDLSCs were cultured in either a 3D culture with a non-adhesive culture plate (Stemfit 3D®) or a conventional 2D culture using a 6-well plate. Morphology, viability, proliferation ability, and osteogenic differentiation were analyzed to characterize the differences induced in identical PDLSCs by 3D and 2D culture environments. In addition, gene expression was analyzed using RNA sequencing to further characterize the functional differences. The diameter and the viability of the 3D-cultured PDLSCs decreased over time, but the shape of the spheroid was maintained for 20 days. Although osteogenic differentiation occurred in both the 2D- and 3D-cultured PDLSCs, compared to the control group it was 20.8 and 1.6 higher in the 3D- and 2D-cultured cells, respectively. RNA sequencing revealed that PDLSCs cultured using 2D and 3D methods have different gene expression profiles. The viability of the 3D-cultured cells was decreased, but they showed superior osteogenic differentiation compared to 2D-cultured cells. Within the limitations of this study, the results demonstrate that the structure and function of PDLSCs are influenced by the cell culture method.
Collapse
|
22
|
Rusu MC, Săndulescu M, Stoenescu MD. Nestin and dental pulp stones - a case report-driven hypothesis. Morphologie 2021; 106:56-60. [PMID: 33485781 DOI: 10.1016/j.morpho.2020.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
The dental pulp stem cells (DPSCs) are mesenchymal stem/stromal cells (MSCs) with multilineage potential of differentiation. Different studies investigated dental pulp stones (PS), the calcified masses in the dental pulp, in regard to their prevalence, topography and structure. The etiology of PS is still unclear and, to our knowledge, the DPSCs were not attributed yet specific roles in PS formation. We report here an immunohistochemical study of a PS-embedding dental pulp from an impacted third mandibular molar of an adult patient, in which we used antibodies against CD34, Ki67, glial fibrillary acidic protein (GFAP), α-smooth muscle actin (α-SMA) and nestin. While endothelial cells expressed CD34 and pericytes or vascular smooth muscle cells expressed α-SMA, DPSCs and the osteoblasts coating the PS were exclusively labeled with nestin antibody. Stromal networks of nestin-expressing DPSCs were regarded as in situ providers of osteogenic progenitors involved in PS formation. Further experimental studies, with larger lots of tissue samples, as well as extended panels of markers, are needed in order to elucidate the DPSC hypothesis in the PS etiology.
Collapse
Affiliation(s)
- M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - M Săndulescu
- Division of Implant Prosthetic Therapy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - M D Stoenescu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania.
| |
Collapse
|
23
|
Köhnke R, Ahlers MO, Birkelbach MA, Ewald F, Krueger M, Fiedler I, Busse B, Heiland M, Vollkommer T, Gosau M, Smeets R, Rutkowski R. Temporomandibular Joint Osteoarthritis: Regenerative Treatment by a Stem Cell Containing Advanced Therapy Medicinal Product (ATMP)-An In Vivo Animal Trial. Int J Mol Sci 2021; 22:E443. [PMID: 33466246 PMCID: PMC7795212 DOI: 10.3390/ijms22010443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ-OA) is a chronic degenerative disease that is often characterized by progressive impairment of the temporomandibular functional unit. The aim of this randomized controlled animal trial was a comparative analysis regarding the chondroregenerative potency of intra-articular stem/stromal cell therapy. Four weeks after combined mechanical and biochemical osteoarthritis induction in 28 rabbits, therapy was initiated by a single intra-articular injection, randomized into the following groups: Group 1: AB Serum (ABS); Group 2: Hyaluronic acid (HA); Group 3: Mesenchymal stromal cells (STx.); Group 4: Mesenchymal stromal cells in hyaluronic acid (HA + STx.). After another 4 weeks, the animals were euthanized, followed by histological examination of the removed joints. The histological analysis showed a significant increase in cartilage thickness in the stromal cell treated groups (HA + STx. vs. ABS, p = 0.028; HA + ST.x vs. HA, p = 0.042; STx. vs. ABS, p = 0.036). Scanning electron microscopy detected a similar heterogeneity of mineralization and tissue porosity in the subchondral zone in all groups. The single intra-articular injection of a stem cell containing, GMP-compliant advanced therapy medicinal product for the treatment of iatrogen induced osteoarthritis of the temporomandibular joint shows a chondroregenerative effect.
Collapse
Affiliation(s)
- Robert Köhnke
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Marcus Oliver Ahlers
- Department of Prosthetic Dentistry School of Dental Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- CMD-Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Moritz Alexander Birkelbach
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Florian Ewald
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany;
| | | | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.F.); (B.B.)
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (I.F.); (B.B.)
| | - Max Heiland
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, 14197 Berlin, Germany;
| | - Tobias Vollkommer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Rico Rutkowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (M.A.B.); (T.V.); (M.G.); (R.S.)
| |
Collapse
|
24
|
Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Bashir NZ. The role of insulin-like growth factors in modulating the activity of dental mesenchymal stem cells. Arch Oral Biol 2020; 122:104993. [PMID: 33259987 DOI: 10.1016/j.archoralbio.2020.104993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022]
Abstract
Regenerative treatment protocols are an exciting prospect in the management of oral pathology, as they allow for tissues to be restored to their original form and function, as compared to the reparative healing mechanisms which currently govern the outcomes of the majority of dental treatment. Stem cell therapy presents with a great deal of untapped potential in this pursuit of tissue regeneration, and, in particular, mesenchymal stem cells (MSCs) derived from dental tissues are of specific relevance with regards to their applications in engineering craniofacial tissues. A number of mediatory factors are involved in modulating the actions of dental MSCs, and, of these, insulin like growth factors (IGFs) are known to have potent effects in governing the behavior of these cells. The IGF family comprises a number of primary ligands, receptors, and binding proteins which are known to modulate the key properties of dental MSCs, such as their proliferation rates, differentiation potential, and mineralisation. The aims of this review are three-fold: (i) to present an overview of dental MSCs and the role of growth factors in modulating their characteristics, (ii) to discuss in greater detail the specific role of IGFs and the benefits they may convey for tissue engineering, and (iii) to provide a summary of potential for in vivo clinical translation of the current in vitro body of evidence.
Collapse
|
26
|
Hao J, Yang H, Cao Y, Zhang C, Fan Z. IGFBP5 enhances the dentinogenesis potential of dental pulp stem cells via JNK and ErK signalling pathways. J Oral Rehabil 2020; 47:1557-1565. [DOI: 10.1111/joor.13047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Junling Hao
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing China
- Department of Endodontics Capital Medical University School of Stomatology Beijing China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing China
| | - Chen Zhang
- Department of Endodontics Capital Medical University School of Stomatology Beijing China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function ReconstructionCapital Medical University School of Stomatology Beijing China
| |
Collapse
|
27
|
Yang H, Cao Y, Zhang J, Liang Y, Su X, Zhang C, Liu H, Han X, Ge L, Fan Z. DLX5 and HOXC8 enhance the chondrogenic differentiation potential of stem cells from apical papilla via LINC01013. Stem Cell Res Ther 2020; 11:271. [PMID: 32631410 PMCID: PMC7336658 DOI: 10.1186/s13287-020-01791-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based cartilage tissue regeneration is a treatment with great potential. How to enhance the MSC chondrogenic differentiation is a key issue involved in cartilage formation. In the present study, we seek to expound the phenotypes and mechanisms of DLX5 in chondrogenic differentiation function in MSCs. METHODS Stem cells from apical papilla (SCAPs) were used. The Alcian Blue staining, pellet culture system, and cell transplantation in rabbit knee cartilage defect were used to evaluate the chondrogenic differentiation function of MSCs. Western blot, real-time RT-PCR, and ChIP assays were used to evaluate the molecular mechanisms. RESULTS DLX5 and HOXC8 expressions were upregulated during chondrogenic differentiation. In vitro results showed that DLX5 and HOXC8 enhanced the expression of chondrogenic markers including collagen II (COL2), collagen V (COL5), and sex-determining region Y box protein 9 (SOX9) and promoted the chondrogenic differentiation and the formation of cartilage clumps in the pellet culture system. Mechanically, DLX5 and HOXC8 formed protein complexes and negatively regulated the LncRNA, LINC01013, via directly binding its promoter. In vivo transplantation experiment showed that DLX5 and HOXC8 could restore the cartilage defect in the rabbit knee model. In addition, knock-down of LINC01013 enhanced the chondrogenic differentiation of SCAPs. CONCLUSIONS In conclusion, DLX5 and HOXC8 enhance the chondrogenic differentiation abilities of SCAPs by negatively regulating LINC01013 in SCAPs, and provided the potential target for promoting cartilage tissue regeneration.
Collapse
Affiliation(s)
- Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatology Hospital, School of Stomatology, Capital Medical University, No. 4 Tian Tan Xi Li, Dongcheng District, Beijing, 100050, China
| | - Yangyang Cao
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatology Hospital, School of Stomatology, Capital Medical University, No. 4 Tian Tan Xi Li, Dongcheng District, Beijing, 100050, China
| | - Jianpeng Zhang
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yuncun Liang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatology Hospital, School of Stomatology, Capital Medical University, No. 4 Tian Tan Xi Li, Dongcheng District, Beijing, 100050, China
| | - Xiaomin Su
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatology Hospital, School of Stomatology, Capital Medical University, No. 4 Tian Tan Xi Li, Dongcheng District, Beijing, 100050, China
| | - Chen Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatology Hospital, School of Stomatology, Capital Medical University, No. 4 Tian Tan Xi Li, Dongcheng District, Beijing, 100050, China
| | - Huina Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatology Hospital, School of Stomatology, Capital Medical University, No. 4 Tian Tan Xi Li, Dongcheng District, Beijing, 100050, China
| | - Xiao Han
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatology Hospital, School of Stomatology, Capital Medical University, No. 4 Tian Tan Xi Li, Dongcheng District, Beijing, 100050, China
| | - Lihua Ge
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatology Hospital, School of Stomatology, Capital Medical University, No. 4 Tian Tan Xi Li, Dongcheng District, Beijing, 100050, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatology Hospital, School of Stomatology, Capital Medical University, No. 4 Tian Tan Xi Li, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
28
|
Li Y, Yu F, Liu Y, Liang Q, Huang Y, Xiang Q, Zhang Q, Su Z, Yang Y, Zhao Y. Sulfonated chitosan oligosaccharide alleviates the inhibitory effect of basic fibroblast growth factor on osteogenic differentiation of human periodontal ligament stem cells. J Periodontol 2020; 91:975-985. [PMID: 31573683 DOI: 10.1002/jper.19-0273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Periodontal ligament stem cells (PDLSCs) play an essential role in periodontal tissue repair. Basic fibroblast growth factor (bFGF) has been used in the clinical treatment of periodontal disease. However, studies have shown that bFGF inhibits the osteogenic differentiation of PDLSCs, which is not conducive to alveolar bone repair. Sulfonated chitosan oligosaccharide (SCOS), a heparan-like compound, can maintain the conformation of bFGF and promote its proliferation activity. This study investigated the effects of bFGF in combination with SCOS on the osteogenic differentiation of hPDLSCs. METHODS hPDLSCs were isolated from healthy human periodontal ligament and identified by flow cytometry and immunofluorescence. The affinity between SCOS and bFGF was analyzed by surface plasmon resonance. Changes in osteogenic differentiation by combination of bFGF with SCOS were analyzed by alkaline phosphatase activity assay, Sirius Red staining, and Alizarin Red staining. Expression of genes and proteins was investigated by western blotting and reverse transcription-quantitative PCR. RESULTS Extracted hPDLSCs were mesenchymal stem cells with pluripotent differentiation potential. SCOS exhibited an affinity for bFGF. bFGF (20 ng/mL) promoted the proliferation of hPDLSCs, but inhibited their osteogenic differentiation. SCOS alleviated the inhibitory effect of bFGF on the osteogenic differentiation of hPDLSCs. CONCLUSIONS SCOS can reduce the inhibitory effect of bFGF on the osteogenic differentiation of hPDLSCs. This study provides evidence for the clinical use of bFGF to repair periodontal tissue.
Collapse
Affiliation(s)
- Yangfan Li
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Fenglin Yu
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Yang Liu
- Department of Stomatology, Jinan University Medical College, Guangzhou, P.R. China
| | - Qian Liang
- Department of Stomatology, Jinan University Medical College, Guangzhou, P.R. China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Qihao Zhang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Zhijian Su
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Yan Yang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, P.R. China
| | - Yueping Zhao
- Department of Stomatology, Jinan University Medical College, Guangzhou, P.R. China
| |
Collapse
|
29
|
Yang H, Li G, Han N, Zhang X, Cao Y, Cao Y, Fan Z. Secreted frizzled-related protein 2 promotes the osteo/odontogenic differentiation and paracrine potentials of stem cells from apical papilla under inflammation and hypoxia conditions. Cell Prolif 2019; 53:e12694. [PMID: 31568642 PMCID: PMC6985663 DOI: 10.1111/cpr.12694] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/31/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives Mesenchymal stem cell (MSC)‐based dental tissue regeneration is a potential treatment method in future, while inflammation and hypoxia niche will affect MSC‐mediated tissue regeneration. In this research, we intended to investigate the influence and mechanism of secreted frizzled‐related protein 2(SFRP2) on MSC function under inflammation and hypoxia conditions. Material and methods Stem cells from apical papilla (SCAPs) were used in this study. The alkaline phosphatase (ALP) activity, Alizarin Red S staining, scratch‐simulated wound migration and transwell chemotaxis assay were used to evaluate the functions of SFRP2. The Western blot, real‐time RT‐PCR and ChIP assays were used to evaluate the mechanism of SFRP2. Results Under inflammation and hypoxia conditions, the over‐expression of SFRP2 could enhance the osteo/odontogenic differentiation ability. Mechanismly, SFRP2 inhibited canonical Wnt/β‐catenin signalling pathway and then inhibited the target genes of nuclear factor kappa B (NFkB) signalling pathway. Inflammation or hypoxia conditions could promote the expression of lysine demethylase 2A (KDM2A) and repress SFRP2 transcription through decreasing histone methylation in the SFRP2 promoter. Besides, proteomic analysis showed that SFRP2 promoted SCAPs to secret more functional cytokines, which improve the migration, chemotaxis and osteo/odontogenic ability of MSCs. Conclusions Our discoveries revealed that SFRP2 enhanced the osteo/odontogenic differentiation and paracrine potentials of SCAPs under hypoxia and inflammation conditions and provided a potential cytokine for promoting tissue regeneration in hypoxia and inflammatory niche.
Collapse
Affiliation(s)
- Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Guoqing Li
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Nannan Han
- Department of Periodontology, Capital Medical University School of Stomatology, Beijing, China
| | - Xiuli Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Periodontology, Capital Medical University School of Stomatology, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Yu Cao
- Department of General Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
30
|
Li G, Han N, Yang H, Zhang X, Cao Y, Cao Y, Shi R, Wang S, Fan Z. SFRP2 promotes stem cells from apical papilla‐mediated periodontal tissue regeneration in miniature pig. J Oral Rehabil 2019; 47 Suppl 1:12-18. [PMID: 31469431 DOI: 10.1111/joor.12882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Guoqing Li
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Beijing Stomatological Hospital Capital Medical University Beijing China
- Molecular Laboratory for Gene Therapy and Tooth Regeneration Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
| | - Nannan Han
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Beijing Stomatological Hospital Capital Medical University Beijing China
- Department of Periodontology School of Stomatology Beijing Stomatological Hospital Capital Medical University Beijing China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Beijing Stomatological Hospital Capital Medical University Beijing China
| | - Xiuli Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Beijing Stomatological Hospital Capital Medical University Beijing China
- Department of Periodontology School of Stomatology Beijing Stomatological Hospital Capital Medical University Beijing China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Beijing Stomatological Hospital Capital Medical University Beijing China
| | - Yu Cao
- Department of General Dentistry School of Stomatology Beijing Stomatological Hospital Capital Medical University Beijing China
| | - Ruitang Shi
- Department of Endodontics School of Stomatology Beijing Stomatological Hospital Capital Medical University Beijing China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Capital Medical University Beijing China
- Department of Biochemistry and Molecular Biology Capital Medical University School of Basic Medical Sciences Beijing China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction School of Stomatology Beijing Stomatological Hospital Capital Medical University Beijing China
| |
Collapse
|
31
|
Zibandeh N, Genc D, Ozgen Z, Duran Y, Kasap N, Goker K, Baris S, Ergun T, Akkoc T. Effect of Dental Follicle Mesenchymal Stem Cell on Th1 and Th2 Derived Naive T Cells in Atopic Dermatitis Patients. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2019. [DOI: 10.33808/clinexphealthsci.600104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Novello S, Debouche A, Philippe M, Naudet F, Jeanne S. Clinical application of mesenchymal stem cells in periodontal regeneration: A systematic review and meta-analysis. J Periodontal Res 2019; 55:1-12. [PMID: 31378933 DOI: 10.1111/jre.12684] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/16/2019] [Accepted: 06/29/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate the potential efficacy of mesenchymal stem cells (MSCs) in periodontal regeneration in humans on the following main outcomes: clinical attachment level (CAL), probing depth (PD), and gingival recession (GR). BACKGROUND The clinical application of stem cells in periodontal regeneration has begun in recent years, but clinical practices are not yet standardized and no recommendations are available at this time. METHODS Electronic database searches and hand searches were conducted. All types of studies, case series, and case reports were qualitatively described. Double-blind randomized controlled trials (RCTs) evaluating MSCs in periodontal regeneration were included in a meta-analysis if they compared administration of MSCs vs application of stem cell-free therapy in the control group, in healthy patients with periodontal defects, with a minimum of three mo of follow-up. RESULTS Fifteen reports were included in qualitative analysis, involving 123 patients and 158 periodontal defects. Only two small RCTs at high risk of bias, with a total of 59 patients and 70 periodontal defects, were included in the meta-analysis. A small but significant difference between test and control groups was found for CAL at three mo (-0.90 mm, 95% CI [-1.51; -0.29]), but not for PD and GR. CONCLUSION Low-quality evidence suggests that MSC-based therapy may have a small impact on periodontal regeneration. However, due to the monocentric character, the small sample size, and potential heterogeneity across the two included RCTs, these results must not be considered as definitive. High-quality RCTs are needed before any clinical use of MSCs in periodontal regeneration.
Collapse
Affiliation(s)
- Solen Novello
- ISCR [(Institut des Sciences Chimiques de Rennes)] - UMR 6226, Univ Rennes, Rennes, France.,Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France.,Pôle d'Odontologie, UF Parodontologie, CHU Rennes, Rennes, France
| | - Alexandre Debouche
- Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France
| | - Marie Philippe
- Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France
| | - Florian Naudet
- CHU Rennes, Inserm, CIC 1414 [(Centre d'Investigation Clinique de Rennes)], Univ Rennes, Rennes, France
| | - Sylvie Jeanne
- ISCR [(Institut des Sciences Chimiques de Rennes)] - UMR 6226, Univ Rennes, Rennes, France.,Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France.,Pôle d'Odontologie, UF Parodontologie, CHU Rennes, Rennes, France
| |
Collapse
|
33
|
Zhang J, Ding H, Liu X, Sheng Y, Liu X, Jiang C. Dental Follicle Stem Cells: Tissue Engineering and Immunomodulation. Stem Cells Dev 2019; 28:986-994. [PMID: 30968740 DOI: 10.1089/scd.2019.0012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jie Zhang
- Department of Orthodontics, the Affiliated Hospital of Qingdao University; School of Stomatology, Qingdao University, Qingdao, China
| | - Hong Ding
- Department of Orthodontics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinfeng Liu
- Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunfei Sheng
- Department of Orthodontics, the Affiliated Hospital of Qingdao University; School of Stomatology, Qingdao University, Qingdao, China
| | - Xinqiang Liu
- Department of Orthodontics, the Affiliated Hospital of Qingdao University; School of Stomatology, Qingdao University, Qingdao, China
| | - Chunmiao Jiang
- Department of Orthodontics, the Affiliated Hospital of Qingdao University; School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Simonović J, Toljić B, Rašković B, Jovanović V, Lazarević M, Milošević M, Nikolić N, Panajotović R, Milašin J. Raman microspectroscopy: toward a better distinction and profiling of different populations of dental stem cells. Croat Med J 2019. [PMID: 31044579 PMCID: PMC6509629 DOI: 10.3325/croatmedj_60_0078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM To characterize stem cells originating from different dental tissues (apical papilla [SCAP], dental follicle [DFSC], and pulp [DPSC]) and test the capacity of Raman microspectroscopy to distinguish between the three dental stem cell types. METHODS SCAP, DFSC, and DPSC cultures were generated from three immature wisdom teeth originating from three patients. Cell stemness was confirmed by inducing neuro-, osteo-, chondro-, and adipo-differentiaton and by mesenchymal marker expression analysis by flow-cytometry and real-time polymerase chain reaction. Cellular components were then evaluated by Raman microspectroscopy. RESULTS We found differences between SCAP, DFSC, and DPSC Raman spectra. The ratio between proteins and nucleic acids (748/770), a parameter for discriminating more differentiated from less differentiated cells, showed significant differences between the three cell types. All cells also displayed a fingerprint region in the 600-700 cm-1 range, and characteristic lipid peaks at positions 1440 cm-1 and 1650 cm-1. CONCLUSION Although different dental stem cells exhibited similar Raman spectra, the method enabled us to make subtle distinction between them.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jelena Milašin
- Jelena Milašin, School of Dental Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia,
| |
Collapse
|
35
|
Youssef AR, Emara R, Taher MM, Al-Allaf FA, Almalki M, Almasri MA, Siddiqui SS. Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, Odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC Oral Health 2019; 19:133. [PMID: 31266498 PMCID: PMC6604301 DOI: 10.1186/s12903-019-0827-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vital pulp therapy preserves and maintains the integrity and the health of dental pulp tissue that has been injured by trauma, caries or restorative procedures. The enhancement of cells viability and formation of reparative dentine and new blood vessels are vital determinants of the success of direct pulp capping. Therefore, the aims of this study was to evaluate and compare the in vitro osteogenic, odontogenic and angiogenic effects of mineral trioxide aggregate (MTA), calcium hydroxide [Ca(OH)2], Biodentine and Emdogain on dental pulp stem cells (DPSCs) and examine the effects of the tested materials on cell viability. METHODS DPSCs were treated with MTA, Ca(OH)2, Biodentine or Emdogain. Untreated cells were used as control. The cell viability was measured by MTT assay on day 3. Real-Time PCR with SYBR green was used to quantify the gene expression levels of osteogenic markers (alkaline phosphatase and osteopontin), odontogenic marker (dentin sialophosphoprotein) and angiogenic factor (vascular endothelial growth factor) on day 7 and day 14. RESULTS All capping materials showed variable cytotoxicity against DPSCs (77% for Emdogain, 53% for MTA, 26% for Biodentine and 16% for Ca(OH)2 compared to control (P value < 0.0001). Osteopontin (OPN) and dentin sialophosphoprotein (DSPP) gene expression was increased by all four materials. However, alkaline phosphatase (ALP) was upregulated by all materials except Emdogain. Vascular endothelial growth factor (VEGF) expression was upregulated by all four tested materials except Ca(OH)2. CONCLUSIONS Our results suggest MTA, Biodentine and Emdogain exhibit similar attributes and may score better than Ca(OH)2. Emdogain could be a promising alternative to MTA and Biodentine in enhancing pulp repair capacity following dental pulp injury. However, further future research is required to assess the clinical outcomes and compare it with the in vitro findings.
Collapse
Affiliation(s)
- Abdel-Rahman Youssef
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia. .,Department of Microbiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Ramy Emara
- Department of Restorative dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mohiuddin M Taher
- Department of Medical Genetics, Umm-Al-Qura University, Makkah, Kingdom of Saudi Arabia.,Science and Technology Unit Umm-Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Faisal A Al-Allaf
- Department of Medical Genetics, Umm-Al-Qura University, Makkah, Kingdom of Saudi Arabia.,Science and Technology Unit Umm-Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Majed Almalki
- Department of Restorative dentistry, Faculty of Dentistry, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Mazen A Almasri
- Oral Maxillofacial Surgery Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Shahid S Siddiqui
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
36
|
Wang H, Cao Y. WIF1 enhanced dentinogenic differentiation in stem cells from apical papilla. BMC Oral Health 2019; 19:25. [PMID: 30691423 PMCID: PMC6350383 DOI: 10.1186/s12903-018-0700-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 12/19/2018] [Indexed: 01/26/2023] Open
Abstract
Background Odontogenic mesenchymal stem cells (MSCs) isolated from tooth tissues are a reliable resource that can be utilized for dental tissue regeneration. Exploration of the mechanisms underlying the regulation of their differentiation may be helpful for investigating potential clinical applications. The stem cell niche plays an important role in maintaining cell functioning. Previous studies found that Wnt inhibitory factor 1 (WIF1) is more highly expressed in apical papilla tissues than in stem cells from apical papilla (SCAPs) using microarray analysis. However, the function of WIF1 in SCAPs remains unclear. In the present study, we investigated the function of WIF1 during dentinogenic differentiation in SCAPs. Methods A retrovirus containing HA-WIF1 was used to overexpress WIF1 in SCAPs. Using Western blot analysis, we verified the expression of HA-WIF1. Alkaline phosphatase (ALP) activity assays, Alizarin Red staining and quantitative calcium analysis were performed to investigate the in vitro potential for dentinogenic differentiation in SCAPs. The expression of dentinogenesis-associated genes DSPP, DMP1, Runx2 and OSX were assayed using real-time RT-PCR. Transplantation experiments were used to measure dentinogenesis potential in vivo. Results The real time RT-PCR results showed that WIF1 was more highly expressed in apical papilla tissues than in SCAPs, and its expression was increased during the process of dentinogenic differentiation. Overexpression of WIF1 enhanced ALP activity and mineralization in vitro, as well as the expression of DSPP, DMP1 and OSX in SCAPs. Moreover, in vivo transplantation experiments revealed that dentinogenesis in SCAPs was enhanced by WIF1 overexpression. Conclusion These results suggest that WIF1 may enhance dentinogenic differentiation potential in dental MSCs via its regulation of OSX and identified potential target genes that could be useful for improving dental tissue regeneration.
Collapse
Affiliation(s)
- Haifeng Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050, China.,Department of Stomatology, Beijing Bo'ai hospital, China Rehabilitation Research Center, School of Rehabilitation Capital Medical University, No.10 Jiao Men Bei Lu, Beijing, 100068, China
| | - Yu Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
37
|
Zhang Y, Yuan L, Meng L, Fang M, Guo S, Wang D, Ma J, Wang L. Guanine and nucleotide binding protein 3 promotes odonto/osteogenic differentiation of apical papilla stem cells via JNK and ERK signaling pathways. Int J Mol Med 2018; 43:382-392. [PMID: 30431055 PMCID: PMC6257834 DOI: 10.3892/ijmm.2018.3984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
Odonto/osteogenic differentiation of stem cells from the apical papilla (SCAPs) is a key process in tooth root formation and development. However, the molecular mechanisms underlying this process remain largely unknown. In the present study, it was identified that guanine and nucleotide binding protein 3 (GNAI3) was at least in part responsible for the odonto/osteogenic differentiation of SCAPs. GNAI3 was markedly induced in mouse tooth root development in vivo and in human SCAPs mineralization in vitro. Notably, knockdown of GNAI3 by lentiviral vectors expressing short-hairpin RNAs against GNAI3 significantly inhibited the proliferation, cell cycle progression and migration of SCAPs, as well as odonto/osteogenic differentiation of SCAPs in vitro, suggesting that GNAI3 may play an essential role in tooth root development. The promotive role of GNAI3 in odonto/osteogenic differentiation was further confirmed by downregulation of odonto/osteogenic makers in GNAI3-deficient SCAPs. In addition, knockdown of GNAI3 effectively suppressed activity of c-Jun N-terminal kinase (JNK) and extracellular-signal regulated kinase (ERK) signaling pathways that was induced during SCAPs differentiation, suggesting that GNAI3 promotes SCAPs mineralization at least partially via JNK/ERK signaling. Taken together, the present results implicate GNAI3 as a critical regulator of odonto/osteogenic differentiation of SCAPs in tooth root development, and suggest a possible role of GNAI3 in regeneration processes in dentin or other tissues.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li Meng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mengru Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
38
|
Tsai CL, Ke MC, Chen YH, Kuo HK, Yu HJ, Chen CT, Tseng YC, Chuang PC, Wu PC. Mineral trioxide aggregate affects cell viability and induces apoptosis of stem cells from human exfoliated deciduous teeth. BMC Pharmacol Toxicol 2018; 19:21. [PMID: 29764492 PMCID: PMC5952617 DOI: 10.1186/s40360-018-0214-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mineral trioxide aggregate (MTA) is widely used for pulp-capping procedures in permanent teeth and as a gold standard material in endodontics. The aim of the study was to investigate the effect of MTA on cell viability and apoptosis when MTA is directly in contact with Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs). METHODS MTA was mixed and coated in the bottom of a 24-well plate. SHEDs collected and cultured from normal exfoliated human deciduous teeth (passages 3-4) were seeded on square cover glasses. The glasses with seeded SHEDs were incubated in the plates with or without MTA coating. They were divided into four groups: MTA direct contact, direct control, MTA indirect contact, and indirect control. After 1, 2 and 3 days of culturing, cell morphology was observed and cell viability was assessed by the WST-1 cell cytotoxicity assay. TUNEL assay, immunofluorescent labeling and western blot analysis were used to study the effects of MTA on SHEDs apoptosis. RESULTS MTA impaired cell viability of SHEDs in 1, 2 and 3 days, and the effect of direct contact was more severe. Cell apoptosis with positive Annexin V and TUNEL staining was noted when there was direct contact with MTA. Western blot analysis revealed that Bcl-2 and Bcl-xL decreased after SHEDs were in contact with MTA. CONCLUSIONS This study shows that direct contact with 1 week post-set MTA significantly decreases the viability of SHEDs and induced cell apoptosis. The results suggest that there is a possible cytotoxic effect of pulp tissue when there is direct contact with MTA. Different responses would be expected due to the strong alkaline characteristics of fresh mixed MTA.
Collapse
Affiliation(s)
- Chia-Ling Tsai
- Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mu-Chan Ke
- Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Hao Chen
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Da-Pi Road, Niao-Sung District, Kaohsiung, 88301, Taiwan, Republic of China
| | - Hsi-Kung Kuo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Da-Pi Road, Niao-Sung District, Kaohsiung, 88301, Taiwan, Republic of China
| | - Hun-Ju Yu
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Da-Pi Road, Niao-Sung District, Kaohsiung, 88301, Taiwan, Republic of China
| | - Chueh-Tan Chen
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Da-Pi Road, Niao-Sung District, Kaohsiung, 88301, Taiwan, Republic of China
| | - Ya-Chi Tseng
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Da-Pi Road, Niao-Sung District, Kaohsiung, 88301, Taiwan, Republic of China
| | - Pei-Chin Chuang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Pei-Chang Wu
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Da-Pi Road, Niao-Sung District, Kaohsiung, 88301, Taiwan, Republic of China.
| |
Collapse
|
39
|
Van Bellinghen X, Idoux-Gillet Y, Pugliano M, Strub M, Bornert F, Clauss F, Schwinté P, Keller L, Benkirane-Jessel N, Kuchler-Bopp S, Lutz JC, Fioretti F. Temporomandibular Joint Regenerative Medicine. Int J Mol Sci 2018; 19:E446. [PMID: 29393880 PMCID: PMC5855668 DOI: 10.3390/ijms19020446] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 01/09/2023] Open
Abstract
The temporomandibular joint (TMJ) is an articulation formed between the temporal bone and the mandibular condyle which is commonly affected. These affections are often so painful during fundamental oral activities that patients have lower quality of life. Limitations of therapeutics for severe TMJ diseases have led to increased interest in regenerative strategies combining stem cells, implantable scaffolds and well-targeting bioactive molecules. To succeed in functional and structural regeneration of TMJ is very challenging. Innovative strategies and biomaterials are absolutely crucial because TMJ can be considered as one of the most difficult tissues to regenerate due to its limited healing capacity, its unique histological and structural properties and the necessity for long-term prevention of its ossified or fibrous adhesions. The ideal approach for TMJ regeneration is a unique scaffold functionalized with an osteochondral molecular gradient containing a single stem cell population able to undergo osteogenic and chondrogenic differentiation such as BMSCs, ADSCs or DPSCs. The key for this complex regeneration is the functionalization with active molecules such as IGF-1, TGF-β1 or bFGF. This regeneration can be optimized by nano/micro-assisted functionalization and by spatiotemporal drug delivery systems orchestrating the 3D formation of TMJ tissues.
Collapse
Affiliation(s)
- Xavier Van Bellinghen
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| | - Marion Pugliano
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| | - Marion Strub
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Fabien Bornert
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Francois Clauss
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| | - Pascale Schwinté
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
| | - Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
| | - Jean Christophe Lutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
- Faculté de Médecine, Université de Strasbourg, 11 rue Humann, 67000 Strasbourg, France.
| | - Florence Fioretti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 rue Humann, 67000 Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Ste Elisabeth, 67000 Strasbourg, France.
- Médecine et Chirurgie Bucco-Dentaires & Chirurgie Maxillo-Facial, Hôpitaux Universitaires de Strasbourg (HUS), 1 place de l'Hôpital, 67000 Strasbourg, France.
| |
Collapse
|
40
|
Daniela Ferreira Araújo BENÍCIO, Luciana Oliveira PEREIRA, Izabel Cristina Rodrigues da SILVA, Ricardo Bentes AZEVEDO, Ana Cristina Barreto BEZERRA. Culture of human dental pulp cells at variable times post-tooth extraction. Braz Oral Res 2018; 32:e003. [DOI: 10.1590/1807-3107bor-2018.vol32.0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023] Open
|
41
|
|
42
|
Albiero ML, Stipp RN, Saito MT, Casati MZ, Sallum EA, Nociti FH, Silvério KG. Viability and Osteogenic Differentiation of Human Periodontal Ligament Progenitor Cells Are Maintained After Incubation With Porphyromonas gingivalis Protein Extract. J Periodontol 2017. [DOI: 10.1902/jop.2017.170116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mayra Laino Albiero
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | | | - Miki Taketomi Saito
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Márcio Zaffalon Casati
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Enilson Antonio Sallum
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Francisco Humberto Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Karina Gonzales Silvério
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| |
Collapse
|
43
|
The neurotrophic effects of different human dental mesenchymal stem cells. Sci Rep 2017; 7:12605. [PMID: 28974767 PMCID: PMC5626751 DOI: 10.1038/s41598-017-12969-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022] Open
Abstract
The current gold standard treatment for peripheral nerve injury is nerve grafting but this has disadvantages such as donor site morbidity. New techniques focus on replacing these grafts with nerve conduits enhanced with growth factors and/or various cell types such as mesenchymal stem cells (MSCs). Dental-MSCs (D-MSCs) including stem cells obtained from apical papilla (SCAP), dental pulp stem cells (DPSC), and periodontal ligament stem cells (PDLSC) are potential sources of MSCs for nerve repair. Here we present the characterization of various D-MSCs from the same human donors for peripheral nerve regeneration. SCAP, DPSC and PDLSC expressed BDNF, GDNF, NGF, NTF3, ANGPT1 and VEGFA growth factor transcripts. Conditioned media from D-MSCs enhanced neurite outgrowth in an in vitro assay. Application of neutralizing antibodies showed that brain derived neurotrophic factor plays an important mechanistic role by which the D-MSCs stimulate neurite outgrowth. SCAP, DPSC and PDLSC were used to treat a 10 mm nerve gap defect in a rat sciatic nerve injury model. All the stem cell types significantly enhanced axon regeneration after two weeks and showed neuroprotective effects on the dorsal root ganglia neurons. Overall the results suggested SCAP to be the optimal dental stem cell type for peripheral nerve repair.
Collapse
|
44
|
Khoshhal M, Amiri I, Gholami L. Comparison of in vitro properties of periodontal ligament stem cells derived from permanent and deciduous teeth. J Dent Res Dent Clin Dent Prospects 2017; 11:140-148. [PMID: 29184628 PMCID: PMC5666212 DOI: 10.15171/joddd.2017.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 07/29/2017] [Indexed: 12/15/2022] Open
Abstract
Background. Stem cells have contributed to the development of tissue-engineered-based regenerative periodontal therapies. In order to find the best stem cell sources for such therapies, the biologic properties of stem cells isolated from periodontal ligaments (PDL) of deciduous (DePDLSC) and permanent (PePDLSC) teeth were comparatively evaluated. Methods. PDL stem cells were isolated from six sound fully erupted premolars and six deciduous canines of healthy subjects. In vitro biologic characteristics such as colony formation, viability, stem cell marker identification and osteogenic differentiation (using alkaline phosphatase analysis and Alizarin red staining) were comparatively assessed using one-way ANOVA and post hoc Tukey tests using SPSS 13.0. Results. Stem cell populations isolated from both groups were CD105+ and CD90+ and CD45‒. No statistically significant differences were found in stem cell markers, colony formation and viability. Both groups were capable of osteogenic differentiation. However, alkaline phosphatase activity test showed a statistically significant difference, with PePDLSC exhibiting higher alkaline phosphatase activity (P=0.000). No statistically significant difference was seen in quantitative alizarine red staining (P=0.559). Conclusion. Mesenchymal stem cells of PDL could successfully be isolated from permanent and deciduous teeth. A minor difference was observed in the osteogenic properties of the two cell types, which might affect their future clinical applications.
Collapse
Affiliation(s)
- Masoumeh Khoshhal
- Dental Implant Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Department of Anatomy and Embryology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Gholami
- Department of Periodontology, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
45
|
Monteiro N, Yelick PC. Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 2017; 11:2443-2461. [PMID: 27151766 PMCID: PMC6625321 DOI: 10.1002/term.2134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nelson Monteiro
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| | - Pamela C. Yelick
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| |
Collapse
|
46
|
Jin L, Cao Y, Yu G, Wang J, Lin X, Ge L, Du J, Wang L, Diao S, Lian X, Wang S, Dong R, Shan Z. SFRP2 enhances the osteogenic differentiation of apical papilla stem cells by antagonizing the canonical WNT pathway. Cell Mol Biol Lett 2017; 22:14. [PMID: 28794794 PMCID: PMC5547503 DOI: 10.1186/s11658-017-0044-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/17/2017] [Indexed: 01/26/2023] Open
Abstract
Background Exploring the molecular mechanisms underlying directed differentiation is helpful in the development of clinical applications of mesenchymal stem cells (MSCs). Our previous study on dental tissue-derived MSCs demonstrated that secreted frizzled-related protein 2 (SFRP2), a Wnt inhibitor, could enhance osteogenic differentiation in stem cells from the apical papilla (SCAPs). However, how SFRP2 promotes osteogenic differentiation of dental tissue-derived MSCs remains unclear. In this study, we used SCAPs to investigate the underlying mechanisms. Methods SCAPs were isolated from the apical papilla of immature third molars. Western blot and real-time RT-PCR were applied to detect the expression of β-catenin and Wnt target genes. Alizarin Red staining, quantitative calcium analysis, transwell cultures and in vivo transplantation experiments were used to study the osteogenic differentiation potential of SCAPs. Results SFRP2 inhibited canonical Wnt signaling by enhancing phosphorylation and decreasing the expression of nuclear β-catenin in vitro and in vivo. In addition, the target genes of the Wnt signaling pathway, AXIN2 (axin-related protein 2) and MMP7 (matrix metalloproteinase-7), were downregulated by SFRP2. WNT1 inhibited the osteogenic differentiation potential of SCAPs. SFRP2 could rescue this WNT1-impaired osteogenic differentiation potential. Conclusions The results suggest that SFRP2 could bind to locally present Wnt ligands and alter the balance of intracellular Wnt signaling to antagonize the canonical Wnt pathway in SCAPs. This elucidates the molecular mechanism underlying the SFRP2-mediated directed differentiation of SCAPs and indicates potential target genes for improving dental tissue regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s11658-017-0044-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luyuan Jin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China
| | - Yu Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China
| | - Guoxia Yu
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China.,Department of Stomatology, Beijing Children's Hospital, Capital Medical University, No.56 Nanlishi Road, Xicheng District, Beijing, 100045 China
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, No. 10 Xitoutiao Youanmen, Fengtai District, Beijing, 100069 China
| | - Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China.,Department of Implant Dentistry, Capital Medical University School of Stomatology, Beijing, 100050 China
| | - Lihua Ge
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China
| | - Liping Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China
| | - Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China
| | - Xiaomeng Lian
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100045 China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, No. 10 Xitoutiao Youanmen, Fengtai District, Beijing, 100069 China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China
| | - Zhaochen Shan
- Oral and Maxillofacial Surgery Department, Capital Medical University School of Stomatology, No. 4 Tiantanxili, Dongcheng District, Beijing, 100050 China
| |
Collapse
|
47
|
In Vitro Cultivation, Characterization and Osteogenic Differentiation of Stem Cells from Human Exfoliated Deciduous Teeth on 3D Printed Polylactic Acid Scaffolds. IRANIAN RED CRESCENT MEDICAL JOURNAL 2017. [DOI: 10.5812/ircmj.55593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Mehrabani D, Mahdiyar P, Torabi K, Robati R, Zare S, Dianatpour M, Tamadon A. Growth kinetics and characterization of human dental pulp stem cells: Comparison between third molar and first premolar teeth. J Clin Exp Dent 2017; 9:e172-e177. [PMID: 28210430 PMCID: PMC5303312 DOI: 10.4317/jced.52824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/14/2016] [Indexed: 01/08/2023] Open
Abstract
Background Dental pulp stem cells (DPSCs) play an important role in tissue regeneration. This study compares the growth kinetics and characterization of third molar and first premolar human DPSCs. Material and Methods Dental pulp tissues were isolated from human first premolar and third molar teeth and were digested by treating them with collagenase type I. Single-cell suspensions from each dental pulp were seeded in T25 culture flasks and the media were replaced every 3 days until 70% confluence. The cells were enumerated to determine the population doubling time (PDT). Cells were characterized using flow cytometry, RT-PCR and osteogenic medium for differentiation of DPSCs. Karyotyping assay was also performed till passage 7th. Results The DPSCs had spindle-shaped morphology. There was an increase in PDT in third molar DPSCs when compared to first premolar teeth. Positive expression of CD44, CD73, and CD90 and negative expression of CD34 and CD45 were illustrated. A normal karyotype was visible for all seven passages. The Alizarin red staining was positive for osteogenic induction of DPSCs. Conclusions When DPSCs are needed, third molar teeth can be a good and convenient candidate for cell transplantation, yielding high number of cells with mesenchymal characteristics. They can be a source for further investigations in vitro and work on tissue engineering protocols. Key words:Stem cells, dental pulp, growth kinetics, characterization.
Collapse
Affiliation(s)
- Davood Mehrabani
- Assistant Professor of Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Assistant Professor of Department of Developmental Biology, Science and Research Branch, Islamic Azad University, Fars, Iran; Assistant Professor of Department of Regenerative Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Parisa Mahdiyar
- Assistant Professor of Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kianoosh Torabi
- Associate Professor of Department of Fixed Prosthodontics, Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Robati
- Assistant Professor of Department of Developmental Biology, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Shahrokh Zare
- Assistant Professor of Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Assistant Professor of Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Assistant Professor of Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Tamadon
- Assistant Professor of Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
49
|
Liu B, Guan Q, Li J, da Roza G, Wang H, Du C. Mesenchymal stroma cells in peritoneal dialysis effluents from patients. Hum Cell 2017; 30:51-59. [PMID: 28058621 PMCID: PMC5357254 DOI: 10.1007/s13577-016-0155-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/01/2016] [Indexed: 01/27/2023]
Abstract
Mesenchymal stroma cells (MSCs) have potential as an emerging cell therapy for treating many different diseases, but discovery of the practical sources of MSCs is needed for the large-scale clinical application of this therapy. This study was to identify MSCs in peritoneal dialysis (PD) effluents that were discarded after PD. The effluents were collected from patients who were on the dialysis for less than 1 month. Adherent cells from the effluents were isolated by incubation in serum-containing medium in plastic culture dishes. Cell surface markers were determined by a flow cytometric analysis, and the in vitro differentiation to chondrocytes, osteocytes or adipocytes was confirmed by staining with a specific dye. After four passages, these isolated cells displayed the typical morphology of mesenchymal cells in traditional 2-D cultures, and were grown to form spherical colonies in 3-D collagen cultures. Flow cytometric analysis revealed that the unsorted cells from all of seven patient samples showed robust expression of typical mesenchymal marker CD29, CD44, CD73, CD90 and CD166, and the absence of CD34, CD79a, CD105, CD271, SSEA-4, Stro-1 and HLA-DR. In differentiation assays, these cells were induced in vitro to chondrocytes, osteocytes or adipocytes. In conclusion, this preliminary study suggests the presence of MSCs in the “discarded” PD effluents. Further characterization of the phenotypes of these MSCs and evaluation of their therapeutic potential, particularly for the prevention of PD failure, are needed.
Collapse
Affiliation(s)
- Bin Liu
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jing Li
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Gerald da Roza
- Fraser Health Nephrology, Royal Columbian Hospital, New Westminster, BC, Canada
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital,154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Jack Bell Research Centre, Room 250A, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| |
Collapse
|
50
|
Malyshev IY, Yanushevich OO. [Tissue engineering of the tooth: directions of development, achievements and unresolved problems]. STOMATOLOGIIA 2017; 96:72-79. [PMID: 28858286 DOI: 10.17116/stomat201796472-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- I Yu Malyshev
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Moscow, Russia
| | - O O Yanushevich
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Moscow, Russia
| |
Collapse
|