1
|
Malakouti P, Mohammadi M, Boshagh MA, Amini A, Rezaee MA, Rahmani MR. Combined effects of pioglitazone and doxorubicin on migration and invasion of MDA-MB-231 breast cancer cells. J Egypt Natl Canc Inst 2022; 34:13. [PMID: 35342925 DOI: 10.1186/s43046-022-00110-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite antitumor properties, chemotherapy medication can create conditions in tumor cells that work in favor of the tumor. Doxorubicin, commonly prescribed chemotherapy agents, can increase the risk of migration and invasion of tumor cells through overexpression of the CXCR4 gene by affecting downstream signaling pathways. The regulatory role of CXCR7 on CXCR4 function has been demonstrated. Therefore, it is hypothesized that combining doxorubicin with another anticancer drug could be a promising approach. METHODS In this research, we evaluated the anti-invasive property of pioglitazone along with antitumor effects of doxorubicin on MDA-MB-231 breast cancer cell lines. RESULTS There was no significant difference between two treatment groups in neither the expression nor changes in the expression of CXCR7 and CXCR4 genes (P < 0.05). Pioglitazone-doxorubicin combination reduced cell migration in tumor cells to a significantly higher extent compared to doxorubicin alone (P < 0.05). CONCLUSIONS Co-administration of pioglitazone and doxorubicin might reduce cell migration in breast cancer tumor cells, and that cell migration function is independent of some specific proteins.
Collapse
Affiliation(s)
- Parisa Malakouti
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobin Mohammadi
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Amin Boshagh
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Abbasali Amini
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Ali Rezaee
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Reza Rahmani
- Department of Immunology and Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
2
|
Hussein S, Khanna P, Yunus N, Gatza ML. Nuclear Receptor-Mediated Metabolic Reprogramming and the Impact on HR+ Breast Cancer. Cancers (Basel) 2021; 13:cancers13194808. [PMID: 34638293 PMCID: PMC8508306 DOI: 10.3390/cancers13194808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Breast cancer is the most commonly diagnosed and second leading cause of cancer-related deaths in women in the United States, with hormone receptor positive (HR+) tumors representing more than two-thirds of new cases. Recent evidence has indicated that dysregulation of multiple metabolic programs, which can be driven through nuclear receptor activity, is essential for tumor genesis, progression, therapeutic resistance and metastasis. This study will review the current advances in our understanding of the impact and implication of altered metabolic processes driven by nuclear receptors, including hormone-dependent signaling, on HR+ breast cancer. Abstract Metabolic reprogramming enables cancer cells to adapt to the changing microenvironment in order to maintain metabolic energy and to provide the necessary biological macromolecules required for cell growth and tumor progression. While changes in tumor metabolism have been long recognized as a hallmark of cancer, recent advances have begun to delineate the mechanisms that modulate metabolic pathways and the consequence of altered signaling on tumorigenesis. This is particularly evident in hormone receptor positive (HR+) breast cancers which account for approximately 70% of breast cancer cases. Emerging evidence indicates that HR+ breast tumors are dependent on multiple metabolic processes for tumor progression, metastasis, and therapeutic resistance and that changes in metabolic programs are driven, in part, by a number of key nuclear receptors including hormone-dependent signaling. In this review, we discuss the mechanisms and impact of hormone receptor mediated metabolic reprogramming on HR+ breast cancer genesis and progression as well as the therapeutic implications of these metabolic processes in this disease.
Collapse
Affiliation(s)
- Shaimaa Hussein
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (S.H.); (P.K.)
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Pooja Khanna
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (S.H.); (P.K.)
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA;
| | - Neha Yunus
- School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA;
| | - Michael L. Gatza
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (S.H.); (P.K.)
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
- School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA;
- Correspondence: ; Tel.: +1-732-235-8751
| |
Collapse
|
3
|
Augimeri G, Montalto FI, Giordano C, Barone I, Lanzino M, Catalano S, Andò S, De Amicis F, Bonofiglio D. Nutraceuticals in the Mediterranean Diet: Potential Avenues for Breast Cancer Treatment. Nutrients 2021; 13:2557. [PMID: 34444715 PMCID: PMC8400469 DOI: 10.3390/nu13082557] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022] Open
Abstract
The traditional Mediterranean Diet constitutes a food model that refers to the dietary patterns of the population living in countries bordering the Mediterranean Sea in the early 1960s. A huge volume of literature data suggests that the Mediterranean-style diet provides several dietary compounds that have been reported to exert beneficial biological effects against a wide spectrum of chronic illnesses, such as cardiovascular and neurodegenerative diseases and cancer including breast carcinoma. Among bioactive nutrients identified as protective factors for breast cancer, natural polyphenols, retinoids, and polyunsaturated fatty acids (PUFAs) have been reported to possess antioxidant, anti-inflammatory, immunomodulatory and antitumoral properties. The multiple anticancer mechanisms involved include the modulation of molecular events and signaling pathways associated with cell survival, proliferation, differentiation, migration, angiogenesis, antioxidant enzymes and immune responses. This review summarizes the anticancer action of some polyphenols, like resveratrol and epigallocatechin 3-gallate, retinoids and omega-3 PUFAs by highlighting the important hallmarks of cancer in terms of (i) cell cycle growth arrest, (ii) apoptosis, (iii) inflammation and (iv) angiogenesis. The data collected from in vitro and in vivo studies strongly indicate that these natural compounds could be the prospective candidates for the future anticancer therapeutics in breast cancer disease.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
| | - Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Marilena Lanzino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (G.A.); (F.I.M.); (C.G.); (I.B.); (M.L.); (S.C.); (S.A.); (F.D.A.)
- Centro Sanitario, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
4
|
Discovery of new chalone adamantyl arotinoids having RXRα-modulating and anticancer activities. Bioorg Chem 2021; 113:104961. [PMID: 34023650 DOI: 10.1016/j.bioorg.2021.104961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 11/23/2022]
Abstract
In the present study, a new series of chalcone adamantly arotinoids (chalcone AdArs) derived from RAR antagonist MX781, are synthesized, characterized, and evaluated for the biological activities in vitro. The studies of antiproliferative activity and RXRα-binding affinity of target compounds result in the discovery of a lead candidate (WA15), which is a good RXRα binder (Kd = 2.89 × 10-6 M) with potent antiproliferative activity against human cancer cell lines (IC50 ≈ 10 μM) and low toxic to normal LO2 and MRC-5 cells (IC50 > 50 μM). Different from MX781, WA15 eliminates RARα antagonist activity but inhibits 9-cis-RA-induced RXRα transactivation activity in a dose-dependent manner. Compound WA15 is found to be a good apoptosis inducer in various cancer cells and promotes cell apoptosis in an RXRα-independent manner. Besides, WA15 shows the induction of proteasome-dependent RXRα degradation which might enhance the WA15-induced apoptosis. Finally, the immunoblotting indicates that WA15 can inhibit the TNFα-induced IKK activation and IκBα degradation, suggesting that the anticancer activity of WA15 might be related to the inhibition of IKK/NF-κB signal pathway.
Collapse
|
5
|
Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, Cara-Lupiañez FE, González-González A, Lorente JA, Sánchez-Rovira P, Granados-Principal S. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med 2020; 10:E200. [PMID: 33138097 PMCID: PMC7711505 DOI: 10.3390/jpm10040200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer which presents a high rate of relapse, metastasis, and mortality. Nowadays, the absence of approved specific targeted therapies to eradicate TNBC remains one of the main challenges in clinical practice. Drug discovery is a long and costly process that can be dramatically improved by drug repurposing, which identifies new uses for existing drugs, both approved and investigational. Drug repositioning benefits from improvements in computational methods related to chemoinformatics, genomics, and systems biology. To the best of our knowledge, we propose a novel and inclusive classification of those approaches whereby drug repurposing can be achieved in silico: structure-based, transcriptional signatures-based, biological networks-based, and data-mining-based drug repositioning. This review specially emphasizes the most relevant research, both at preclinical and clinical settings, aimed at repurposing pre-existing drugs to treat TNBC on the basis of molecular mechanisms and signaling pathways such as androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase, or AXL. Finally, because of the ability and relevance of cancer stem cells (CSCs) to drive tumor aggressiveness and poor clinical outcome, we also focus on those molecules repurposed to specifically target this cell population to tackle recurrence and metastases associated with the progression of TNBC.
Collapse
Affiliation(s)
- Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Francisca E. Cara-Lupiañez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine—PTS—University of Granada, 18016 Granada, Spain
| | | | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| |
Collapse
|
6
|
Briede I, Strumfa I, Vanags A, Gardovskis J. The Association Between Inflammation, Epithelial Mesenchymal Transition and Stemness in Colorectal Carcinoma. J Inflamm Res 2020; 13:15-34. [PMID: 32021376 PMCID: PMC6955597 DOI: 10.2147/jir.s224441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background Inflammation plays an important albeit dual role in carcinogenesis. Survival studies have highlighted the prognostic significance of peritumorous inflammation. Currently, the theoretical background allows inflammation, epithelial mesenchymal transition (EMT) and the closely associated stem cell differentiation in colorectal carcinoma (CRC) to be linked. However, there is scarce direct morphological evidence. Purpose and methods The aim of our study was to investigate the role of inflammation in cancer growth and invasion by analyzing the association between inflammation and known morphological prognostic features of colorectal cancer, EMT, stemness and mismatch repair (MMR) protein expression. The study was designed as a retrospective morphological and immunohistochemical assessment of 553 consecutive cases of surgically treated primary CRC. Results There were statistically significant associations between high-grade inflammation and lower pT (p = 0.002), absence of lymph node metastases (p < 0.001) and less frequent lymphatic (p = 0.003), venous (p = 0.017), arterial (p = 0.012), perineural (p = 0.001) and intraneural (p = 0.01) invasion. In contrast, Crohn's like reaction (CLR) by density of lymphoid follicles in the invasive front lacked significant differences in regard to pT, pN, tumor invasion into surrounding structures (blood or lymphatic vessels, nerves), grade or necrosis (all p > 0.05). The expression of E-cadherin, CD44 and MMR proteins yielded no statistically significant associations with peritumorous inflammation by Klintrup-Mäkinen score or the density of lymphoid follicles. Nevertheless, E-cadherin levels were significantly associated with the density of eosinophils (p = 0.007). Conclusion High-grade peritumorous inflammation is associated with beneficial morphologic CRC features, including less frequent manifestations of invasion, and is not secondary to tissue damage and necrosis. CLR is not associated with cancer spread by pTN; this finding indirectly suggests an independent role of CLR in carcinogenesis. Further, inflammation by Klintrup-Mäkinen grade and CLR is not dependent on epithelial-mesenchymal transition and stem cell differentiation. Our study highlights the complex associations between inflammation, tumor morphology, EMT, stemness and MMR protein expression in human CRC tissues.
Collapse
Affiliation(s)
- Inese Briede
- Department of Pathology, Riga Stradins University, Riga, Latvia
| | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, Riga, Latvia
| | - Andrejs Vanags
- Department of Surgery, Riga Stradins University, Riga, Latvia
| | | |
Collapse
|
7
|
Epigallocatechin-3-gallate and 6-OH-11-O-Hydroxyphenanthrene Limit BE(2)-C Neuroblastoma Cell Growth and Neurosphere Formation In Vitro. Nutrients 2018; 10:nu10091141. [PMID: 30135355 PMCID: PMC6164794 DOI: 10.3390/nu10091141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 12/25/2022] Open
Abstract
We conducted an in vitro study combining a rexinoid, 6-OH-11-O-hydroxyphenanthrene (IIF), and epigallocatechin-3-gallate (EGCG), which is the main catechin of green tea, on BE(2)-C, a neuroblastoma cell line representative of the high-risk group of patients. Neuroblastoma is the most common malignancy of childhood: high-risk patients, having N-MYC over-expression, undergo aggressive therapy and show high mortality or an increased risk of secondary malignancies. Retinoids are used in neuroblastoma therapy with incomplete success: the association of a second molecule might improve the efficacy. BE(2)-C cells were treated by EGCG and IIF, individually or in combination: cell viability, as evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, was reduced, EGCG+IIF being the most effective treatment. Apoptosis occurred and the EGCG+IIF treatment decreased N-MYC protein expression and molecular markers of invasion (MMP-2, MMP-9 and COX-2). Zymography demonstrated nearly 50% inhibition of MMP activity. When BE(2)-C cells were grown in non-adherent conditions to enrich the tumor-initiating cell population, BE(2)-C-spheres were obtained. After 48 h and 72 h treatment, EGCG+IIF limited BE(2)-C-sphere formation and elicited cell death with a reduction of N-MYC expression. We concluded that the association of EGCG to IIF might be applied without toxic effects to overcome the incomplete success of retinoid treatments in neuroblastoma patients.
Collapse
|
8
|
EGFR inhibition by (-)-epigallocatechin-3-gallate and IIF treatments reduces breast cancer cell invasion. Biosci Rep 2017; 37:BSR20170168. [PMID: 28465354 PMCID: PMC5434892 DOI: 10.1042/bsr20170168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 11/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) expression is an important marker in breast carcinoma pathology and is considered a pivotal molecule for cancer cell proliferation, invasion and metastasis. We investigated the effects of epigallocatechin-3-gallate (EGCG), the most active green tea catechin, in combination with 6-OH-11-O-hydroxyphenanthrene (IIF), a synthetic retinoid X receptor-γ (RXRγ) agonist, on three breast carcinoma cell lines: MCF-7, MCF-7TAM and MDA-MB-231. EGFR and AKT activation and molecular markers of cell motility and migration (CD44, extracellular matrix metalloproteinase (MMP) inducer (EMMPRIN), MMP-2, MMP-9 and tissue inhibitor of metalloproteinases (TIMPs)) were studied after EGCG and IIF treatments. The EGCG + IIF treatment was the most active in down-regulating EGFR phosphorylation at Tyr1068 in all the investigated cell lines; p473AKT was also down-regulated in MCF-TAM cells. EGCG + IIF was also the most active treatment in reducing the expression of markers of invasion and migration in all the three cell lines: CD44, EMMPRIN, MMP-2 and -9 expression decreased, whereas TIMPs were up-regulated. Zymography and scratch assay also confirmed the reduced invasion tendency. We considered that EGCG and IIF treatments could alter the molecular network based on EGFR, CD44 and EMMPRIN expression interdependence and reduced the migration tendency in MCF-7, MCF-7TAM and MDA-MB-231 cells. These events only occurred in association with AKT inactivation in MCF-7TAM cells. In conclusion, the combination of EGCG and IIF significantly attenuated the invasive behaviour of breast carcinoma cells.
Collapse
|
9
|
Kumar R. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting. Asian J Androl 2017; 18:682-6. [PMID: 27364545 PMCID: PMC5000788 DOI: 10.4103/1008-682x.183380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD)/AF2 and neglect intrinsically disordered (ID) N-terminal domain (NTD)/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor's (AR's) ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR's structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| |
Collapse
|