1
|
Kim S, Lee BI. The role of cap-assisted endoscopy and its future implications. Clin Endosc 2024; 57:293-301. [PMID: 38807361 PMCID: PMC11133983 DOI: 10.5946/ce.2023.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2024] Open
Abstract
Cap-assisted endoscopy refers to a procedure in which a short tube made of a polymer (mostly transparent) is attached to the distal tip of the endoscope to enhance its diagnostic and therapeutic capabilities. It is reported to be particularly useful in: (1) minimizing blind spots during screening colonoscopy, (2) providing a constant distance from a lesion for clear visualization during magnifying endoscopy, (3) accurately assessing the size of various gastrointestinal lesions, (4) preventing mucosal injury during foreign body removal, (5) securing adequate workspace in the submucosal space during endoscopic submucosal dissection or third space endoscopy, (6) providing an optimal approach angle to a target, and (7) suctioning mucosal and submucosal tissue with negative pressure for resection or approximation. Here, we review various applications of attachable caps in diagnostic and therapeutic endoscopy and their future implications.
Collapse
Affiliation(s)
- Sol Kim
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bo-In Lee
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Zhou Z, Pandey R, Valdez TA. Label-Free Optical Technologies for Middle-Ear Diseases. Bioengineering (Basel) 2024; 11:104. [PMID: 38391590 PMCID: PMC10885954 DOI: 10.3390/bioengineering11020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Medical applications of optical technology have increased tremendously in recent decades. Label-free techniques have the unique advantage of investigating biological samples in vivo without introducing exogenous agents. This is especially beneficial for a rapid clinical translation as it reduces the need for toxicity studies and regulatory approval for exogenous labels. Emerging applications have utilized label-free optical technology for screening, diagnosis, and surgical guidance. Advancements in detection technology and rapid improvements in artificial intelligence have expedited the clinical implementation of some optical technologies. Among numerous biomedical application areas, middle-ear disease is a unique space where label-free technology has great potential. The middle ear has a unique anatomical location that can be accessed through a dark channel, the external auditory canal; it can be sampled through a tympanic membrane of approximately 100 microns in thickness. The tympanic membrane is the only membrane in the body that is surrounded by air on both sides, under normal conditions. Despite these favorable characteristics, current examination modalities for middle-ear space utilize century-old technology such as white-light otoscopy. This paper reviews existing label-free imaging technologies and their current progress in visualizing middle-ear diseases. We discuss potential opportunities, barriers, and practical considerations when transitioning label-free technology to clinical applications.
Collapse
Affiliation(s)
- Zeyi Zhou
- School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Rishikesh Pandey
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Tulio A Valdez
- Department of Otolaryngology, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
3
|
Spreafico G, Chiurazzi M, Bagnoli D, Emiliani S, de Bortoli N, Ciuti G. Endoluminal Procedures and Devices for Esophageal Tract Investigation: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:8858. [PMID: 37960557 PMCID: PMC10650290 DOI: 10.3390/s23218858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Diseases of the esophageal tract represent a heterogeneous class of pathological conditions for which diagnostic paradigms continue to emerge. In the last few decades, innovative diagnostic devices have been developed, and several attempts have been made to advance and standardize diagnostic algorithms to be compliant with medical procedures. To the best of our knowledge, a comprehensive review of the procedures and available technologies to investigate the esophageal tract was missing in the literature. Therefore, the proposed review aims to provide a comprehensive analysis of available endoluminal technologies and procedures to investigate esophagus health conditions. The proposed systematic review was performed using PubMed, Scopus, and Web of Science databases. Studies have been divided into categories based on the type of evaluation and measurement that the investigated technology provides. In detail, three main categories have been identified, i.e., endoluminal technologies for the (i) morphological, (ii) bio-mechanical, and (iii) electro-chemical evaluation of the esophagus.
Collapse
Affiliation(s)
- Giorgia Spreafico
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (M.C.); (G.C.)
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Marcello Chiurazzi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (M.C.); (G.C.)
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | | | | - Nicola de Bortoli
- Gastrointestinal Unit, Department of Translational Sciences and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy;
| | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (M.C.); (G.C.)
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| |
Collapse
|
4
|
Patel AP, Khalaf MA, Riojas-Barrett M, Keihanian T, Othman MO. Expanding endoscopic boundaries: Endoscopic resection of large appendiceal orifice polyps with endoscopic mucosal resection and endoscopic submucosal dissection. World J Gastrointest Endosc 2023; 15:386-396. [PMID: 37274558 PMCID: PMC10236978 DOI: 10.4253/wjge.v15.i5.386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Large appendiceal orifice polyps are traditionally treated surgically. Recently, endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) have been utilized as alternative resection techniques.
AIM To evaluate the efficacy and safety of endoscopic resection techniques for the management of large appendiceal orifice polyps.
METHODS This was a retrospective observational study conducted to assess the feasibility and safety of EMR and ESD for large appendiceal orifice polyps. This project was approved by the Baylor College of Medicine Institutional Review Board. Patients who underwent endoscopic resection of appendiceal orifice polyps ≥ 1 cm from 2015 to 2022 at a tertiary referral endoscopy center in the United States were enrolled. The main outcomes of this study included en bloc resection, R0 resection, post resection adverse events, and polyp recurrence.
RESULTS A total of 19 patients were identified. Most patients were female (53%) and Caucasian (95%). The mean age was 63.3 ± 10.8 years, and the average body mass index was 28.8 ± 6.4. The mean polyp size was 25.5 ± 14.2 mm. 74% of polyps were localized to the appendix (at or inside the appendiceal orifice) and the remaining extended into the cecum. 68% of polyps occupied ≥ 50% of the appendiceal orifice circumference. The mean procedure duration was 61.6 ± 37.9 minutes. Polyps were resected via endoscopic mucosal resection, endoscopic submucosal dissection, and hybrid procedures in 5, 6, and 8 patients, respectively. Final pathology was remarkable for tubular adenoma (n = 10) [one with high grade dysplasia], sessile serrated adenoma (n = 7), and tubulovillous adenoma (n = 2) [two with high grade dysplasia]. En bloc resection was achieved in 84% with an 88% R0 resection rate. Despite the large polyp sizes and challenging procedures, 89% (n = 17) of patients were discharged on the same day as their procedure. Two patients were admitted for post-procedure observation for conservative pain management. Eight patients underwent repeat colonoscopy without evidence of residual or recurrent adenomatous polyps.
CONCLUSION Our study highlights how endoscopic mucosal resection, endoscopic submucosal dissection, and hybrid procedures are all appropriate techniques with minimal adverse effects, further validating the utility of endoscopic procedures in the management of large appendiceal polyps.
Collapse
Affiliation(s)
- Ankur P Patel
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mai A Khalaf
- Department of Tropical Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Tara Keihanian
- Department of Gastroenterology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mohamed O Othman
- Department of Gastroenterology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
5
|
Xie Z, Liu J, Ren Y, Huang J, Lin R, Wang X, Tan Q, Lv S, Song L, Liu C, Ma T, Gong X. Circular array transducer based-photoacoustic/ultrasonic endoscopic imaging with tunable ring-beam excitation. PHOTOACOUSTICS 2023; 29:100441. [PMID: 36606259 PMCID: PMC9807825 DOI: 10.1016/j.pacs.2022.100441] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Photoacoustic/ultrasound endoscopic imaging is regarded as an effective method to achieve accurate detection of intestinal disease by offering both the functional and structural information, simultaneously. Compared to the conventional endoscopy with single transducer and laser spot for signal detection and optical excitation, photoacoustic/ultrasound endoscopic probe using circular array transducer and ring-shaped laser beam avoids the instability brought by the mechanical scanning point-to-point, offering the dual-modality imaging with high accuracy and efficiency. Meanwhile, considering the complex morphological environments of intestinal tracts in clinics, developing the probe having sufficient wide imaging distance range is especially important. In this work, we develop a compact circular photoacoustic/ultrasonic endoscopic probe, using the group of fiber, lens and home-made axicon, to generate relatively concentrated ring-shaped laser beam for 360° excitation with high efficiency. Furthermore, the laser ring size can be tuned conveniently by changing the fiber-lens distance to ensure the potential applicability of the probe in various and complex morphological environments of intestines. Phantom experimental results demonstrate imaging distance range wide enough to cover from 12 mm to 30 mm. In addition, the accessibility of the photoacoustic signals of molecular probes in ex vivo experiments at the tissue depth of 7 mm using excitation energy of 5 mJ has also been demonstrated, showing a high optical excitation efficiency of the probe.
Collapse
Affiliation(s)
- Zhihua Xie
- Research Laboratory for Biomedical Optics and Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiamei Liu
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiqing Huang
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Riqiang Lin
- Research Laboratory for Biomedical Optics and Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiatian Wang
- Research Laboratory for Biomedical Optics and Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qingyuan Tan
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shengmiao Lv
- Research Laboratory for Biomedical Optics and Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Teng Ma
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaojing Gong
- Research Laboratory for Biomedical Optics and Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
6
|
Slomka B, Duan S, Knapp TG, Lima N, Sontz R, Merchant JL, Sawyer TW. Design, fabrication, and preclinical testing of a miniaturized, multispectral, chip-on-tip, imaging probe for intraluminal fluorescence imaging of the gastrointestinal tract. FRONTIERS IN PHOTONICS 2023; 3:1067651. [PMID: 37691859 PMCID: PMC10488317 DOI: 10.3389/fphot.2022.1067651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gastrointestinal cancers continue to account for a disproportionately large percentage of annual cancer deaths in the US. Advancements in miniature imaging technology combined with a need for precise and thorough tumor detection in gastrointestinal cancer screenings fuel the demand for new, small-scale, and low-cost methods of localization and margin identification with improved accuracy. Here, we report the development of a miniaturized, chip-on-tip, multispectral, fluorescence imaging probe designed to port through a gastroscope working channel with the aim of detecting cancerous lesions in point-of-care endoscopy of the gastrointestinal lumen. Preclinical testing has confirmed fluorescence sensitivity and supports that this miniature probe can locate structures of interest via detection of fluorescence emission from exogenous contrast agents. This work demonstrates the design and preliminary performance evaluation of a miniaturized, single-use, chip-on-tip fluorescence imaging system, capable of detecting multiple fluorochromes, and devised for deployment via the accessory channel of a standard gastroscope.
Collapse
Affiliation(s)
- Bridget Slomka
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, United States
| | - Suzann Duan
- Department of Medicine, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | - Thomas G. Knapp
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, United States
| | - Natzem Lima
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona, United States
| | - Ricky Sontz
- Department of Medicine, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | - Juanita L. Merchant
- Department of Medicine, College of Medicine Tucson, University of Arizona, Tucson, AZ, United States
| | - Travis W. Sawyer
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, United States
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
7
|
Liang J, Jiang Y, Abboud Y, Gaddam S. Role of Endoscopy in Management of Upper Gastrointestinal Cancers. Diseases 2022; 11:diseases11010003. [PMID: 36648868 PMCID: PMC9844461 DOI: 10.3390/diseases11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Upper gastrointestinal (GI) malignancy is a leading cause of cancer-related morbidity and mortality. Upper endoscopy has an established role in diagnosing and staging upper GI cancers, screening for pre-malignant lesions, and providing palliation in cases of advanced malignancy. New advances in endoscopic techniques and technology have improved diagnostic accuracy and increased the therapeutic potential of upper endoscopy. We aim to describe the different types of endoscopic technology used in cancer diagnosis, summarize the current guidelines for endoscopic diagnosis and treatment of malignant and pre-malignant lesions, and explore new potential roles for endoscopy in cancer therapy.
Collapse
|
8
|
Raj A, Sebastin A, Subbu N, Sp P, Sivaprakasam M. Enhanced Vascular Features in Porcine Gastrointestinal Endoscopy Using Multispectral Imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2228-2231. [PMID: 36086222 DOI: 10.1109/embc48229.2022.9871634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endoscopic investigation is a predominant stan-dard while assessing the gastrointestinal tract. Even though it has been rigorously used in diagnostics for many decades, a high miss rate has been recorded. Advanced endoscopic imaging still has not found solutions to problems like early cancer detection, polyp generality, disease classification, etc. One of the less explored techniques to study early cancer detection is spectral imaging which deals with the absorption and reflection spectra of various wavelengths of light by different layers of tissue. To study tissues under various illumination, a multi-spectral light source unit that can be used along with an endoscopy system was developed with 10 different LEDs of very narrow bandwidths. Using this light source, a feasibility study was per-formed on an animal in which the upper GI tract of a porcine model was imaged and sample images were taken for processing from five different sections. Some wavelengths showed better contrast enhancements for visualization of vascular structures. Wavelength 420 nm (violet light) showed better contrast and the gradient of the line profile histogram showed the highest intensity change between the blood vessels and the surrounding mucosa. These enhancements showed that spectral imaging can potentially help in studying tissues for early cancer detection and improved visualization of the G I tract using endoscopy.
Collapse
|
9
|
Yu C, Helwig EJ. Artificial intelligence in gastric cancer: a translational narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:269. [PMID: 33708896 PMCID: PMC7940908 DOI: 10.21037/atm-20-6337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Increasing clinical contributions and novel techniques have been made by artificial intelligence (AI) during the last decade. The role of AI is increasingly recognized in cancer research and clinical application. Cancers like gastric cancer, or stomach cancer, are ideal testing grounds to see if early undertakings of applying AI to medicine can yield valuable results. There are numerous concepts derived from AI, including machine learning (ML) and deep learning (DL). ML is defined as the ability to learn data features without being explicitly programmed. It arises at the intersection of data science and computer science and aims at the efficiency of computing algorithms. In cancer research, ML has been increasingly used in predictive prognostic models. DL is defined as a subset of ML targeting multilayer computation processes. DL is less dependent on the understanding of data features than ML. Therefore, the algorithms of DL are much more difficult to interpret than ML, even potentially impossible. This review discussed the role of AI in the diagnostic, therapeutic and prognostic advances of gastric cancer. Models like convolutional neural networks (CNNs) or artificial neural networks (ANNs) achieved significant praise in their application. There is much more to be fully covered across the clinical administration of gastric cancer. Despite growing efforts, adapting AI to improving diagnoses for gastric cancer is a worthwhile venture. The information yield can revolutionize how we approach gastric cancer problems. Though integration might be slow and labored, it can be given the ability to enhance diagnosing through visual modalities and augment treatment strategies. It can grow to become an invaluable tool for physicians. AI not only benefits diagnostic and therapeutic outcomes, but also reshapes perspectives over future medical trajectory.
Collapse
Affiliation(s)
- Chaoran Yu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ernest Johann Helwig
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Chen WC, Chen YJ, Lin ST, Hung WH, Chan MC, Wu IC, Wu MT, Kuo CT, Das S, Kao FJ, Zhuo GY. Label-free characterization of collagen fibers in cancerous esophagus tissues using ratiometric nonlinear optical microscopy. Exp Biol Med (Maywood) 2020; 245:1213-1221. [PMID: 32536201 DOI: 10.1177/1535370220934039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPACT STATEMENT The issue of classifying esophageal cancer at various developmental stages is crucial for determining the optimized treatment protocol for the patients, as well as the prognosis. Precision improvement in staging esophageal cancer keeps seeking quantitative and analytical imaging methods that could augment histopathological techniques. In this work, we used nonlinear optical microscopy for ratiometric analysis on the intrinsic signal of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) from single collagen fibers only in submucosa of esophageal squamous cell carcinoma (ESCC). The blind tests of TPEF/SHG and forward (F)/backward (B) SHG were demonstrated to compare with the histology conclusion. The discussion of sensitivity and specificity was provided via statistical comparison between the four stages of esophageal cancer. To the best of our knowledge, this is the first study of using these two ratios in combination for staging ESCC.
Collapse
Affiliation(s)
- Wei-Chung Chen
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Jen Chen
- Integrative Stem Cell Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shih-Ting Lin
- Integrative Stem Cell Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Wei-Han Hung
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ming-Che Chan
- Institute of Photonic System, College of Photonics, National Chiao-Tung University, Tainan 71150, Taiwan
| | - I-Chen Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Tsang Wu
- Department of Public Health, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chie-Tong Kuo
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Subir Das
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan
| | - Fu-Jen Kao
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan
| | - Guan-Yu Zhuo
- Integrative Stem Cell Center, China Medical University Hospital, Taichung 40447, Taiwan.,Institute of New Drug Development, China Medical University, Taichung 40402, Taiwans
| |
Collapse
|
11
|
Wilson BC, Jermyn M, Leblond F. Challenges and opportunities in clinical translation of biomedical optical spectroscopy and imaging. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-13. [PMID: 29512358 PMCID: PMC5838403 DOI: 10.1117/1.jbo.23.3.030901] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/24/2018] [Indexed: 05/03/2023]
Abstract
Medical devices face many hurdles before they enter routine clinical practice to address unmet clinical needs. This is also the case for biomedical optical spectroscopy and imaging systems that are used here to illustrate the opportunities and challenges involved. Following initial concept, stages in clinical translation include instrument development, preclinical testing, clinical prototyping, clinical trials, prototype-to-product conversion, regulatory approval, commercialization, and finally clinical adoption and dissemination, all in the face of potentially competing technologies. Optical technologies face additional challenges from their being extremely diverse, often targeting entirely different diseases and having orders-of-magnitude differences in resolution and tissue penetration. However, these technologies can potentially address a wide variety of unmet clinical needs since they provide rich intrinsic biochemical and structural information, have high sensitivity and specificity for disease detection and localization, and are practical, safe (minimally invasive, nonionizing), and relatively affordable.
Collapse
Affiliation(s)
- Brian C. Wilson
- University of Toronto and Princess Margaret Cancer Centre/University Health Network, Department of Medical Biophysics, Toronto, Ontario, Canada
| | - Michael Jermyn
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Frederic Leblond
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Québec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Address all correspondence to: Frederic Leblond, E-mail:
| |
Collapse
|
12
|
Intravascular endoscopy improvement through narrow-band imaging. Int J Comput Assist Radiol Surg 2017; 12:2015-2021. [PMID: 28361325 PMCID: PMC5656714 DOI: 10.1007/s11548-017-1579-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Purpose Recent advances in endoscopy have led to new technologies with significant optical imaging improvements. Since its development a few years ago, narrow-band imaging (NBI) has already been proved useful in detecting malignant lesions and carcinoma in clinical settings of urology, gastroenterology and ENT. The potential of this technology for imaging applications of the arterial vessel wall has not been properly analysed yet, but with the observed benefits could prove valuable for this clinical use as well. Methods In order to assess the efficacy of NBI, defects such as burns and mechanical tears were created on the walls of an arterial vessel sample. Ex vivo imaging using NBI and white light imaging (WLI) were performed with rigid and flexible fibre endoscopes. Results A thorough comparison of the images proved that NBI enhances the visualisation of lesions and defects on the artery walls compared to normal WLI. Conclusion WLI provides a direct image of the vessel lumen and its anatomical shape. It is suitable for observation and documentation of intravascular therapies. NBI images are more distinct and have more contrast. This helps to detect even small defects or changes on the inner vessel wall that could provide additional information and lead to more precise and personalised therapies.
Collapse
|
13
|
Ashktorab H, Etaati F, Rezaeean F, Nouraie M, Paydar M, Namin HH, Sanderson A, Begum R, Alkhalloufi K, Brim H, Laiyemo AO. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding. World J Gastroenterol 2016; 22:6539-6546. [PMID: 27605888 PMCID: PMC4968133 DOI: 10.3748/wjg.v22.i28.6539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/13/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the accuracy of using high definition (HD) scope with narrow band imaging (NBI) vs standard white light colonoscope without NBI (ST), to predict the histology of the colon polyps, particularly those < 1 cm.
METHODS: A total of 147 African Americans patients who were referred to Howard University Hospital for screening or, diagnostic or follow up colonoscopy, during a 12-mo period in 2012 were prospectively recruited. Some patients had multiple polyps and total number of polyps was 179. Their colonoscopies were performed by 3 experienced endoscopists who determined the size and stated whether the polyps being removed were hyperplastic or adenomatous polyps using standard colonoscopes or high definition colonoscopes with NBI. The histopathologic diagnosis was reported by pathologists as part of routine care.
RESULTS: Of participants in the study, 55 (37%) were male and median (interquartile range) of age was 56 (19-80). Demographic, clinical characteristics, past medical history of patients, and the data obtained by two instruments were not significantly different and two methods detected similar number of polyps. In ST scope 89% of polyps were < 1 cm vs 87% in HD scope (P = 0.7). The ST scope had a positive predictive value (PPV) and positive likelihood ratio (PLR) of 86% and 4.0 for adenoma compared to 74% and 2.6 for HD scope. There was a trend of higher sensitivity for HD scope (68%) compare to ST scope (53%) with almost the same specificity. The ST scope had a PPV and PLR of 38% and 1.8 for hyperplastic polyp (HPP) compared to 42% and 2.2 for HD scope. The sensitivity and specificity of two instruments for HPP diagnosis were similar.
CONCLUSION: Our results indicated that HD scope was more sensitive in diagnosis of adenoma than ST scope. Clinical diagnosis of HPP with either scope is less accurate compared to adenoma. Colonoscopy diagnosis is not yet fully matched with pathologic diagnosis of colon polyp. However with the advancement of both imaging and training, it may be possible to increase the sensitivity and specificity of the scopes and hence save money for eliminating time and the cost of Immunohistochemistry/pathology.
Collapse
|
14
|
Kim BJ, Park MI, Park SJ, Moon W, Park ET, Kim SE, Lim CS, Yoo JH, Kang SJ. Differential diagnosis of colorectal polyps with narrow band imaging colonoscopy without magnification. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2016; 63:276-82. [PMID: 24870299 DOI: 10.4166/kjg.2014.63.5.276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS Narrow band imaging (NBI) endoscopy can be used for gross differentiation between the types of colonic polyps. This study was conducted as a retrospective study for estimation of the interobserver and intra-observer agreement of the pit pattern of the mucosal surface and the accuracy of histology prediction. METHODS A total of 159 patients underwent complete colonoscopy and 219 polyps examined by NBI endoscopy without magnification were assessed. Interobserver and intra-observer agreement were calculated by investigators in each group for determination of the surface pattern and prediction of histology based on the modified Kudo's classification using intraclass correlation coefficient. RESULTS Interobserver agreement for the surface pit pattern and prediction of polyp type was 0.84 and 0.73 in experienced endoscopists, and 0.86 and 0.62 in trainees, respectively. Intra-observer agreement for the surface pit patterns and prediction of polyp type was 0.81, 0.83, 0.85, 0.83, 0.56, 0.84, 0.51, 0.83, and 0.71; and 0.71, 0.70, 0.82, 0.54, 0.72, 0.37, 0.51, 0.34, and 0.30, respectively. The diagnostic accuracy for prediction of polyp type was 69.4% for experienced endoscopists and 72.9% for trainees. CONCLUSIONS NBI endoscopy without magnification showed fairly good inter and intra-observer agreement for the pit pattern of the mucosal surface and the accuracy of histology prediction; however, it had some limitation for differentiation of colon polyp histologic type. Training and experience with NBI is needed for improvement of accuracy.
Collapse
Affiliation(s)
- Bong Jin Kim
- Department of Internal Medicine, Kosin University College of Medicine, 262 Gamcheon-ro, Seo-gu, Busan 602-702, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Al-Rawhani MA, Beeley J, Cumming DRS. Wireless fluorescence capsule for endoscopy using single photon-based detection. Sci Rep 2015; 5:18591. [PMID: 26678456 PMCID: PMC4683524 DOI: 10.1038/srep18591] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/23/2015] [Indexed: 12/19/2022] Open
Abstract
Fluorescence Imaging (FI) is a powerful technique in biological science and clinical medicine. Current FI devices that are used either for in-vivo or in-vitro studies are expensive, bulky and consume substantial power, confining the technique to laboratories and hospital examination rooms. Here we present a miniaturised wireless fluorescence endoscope capsule with low power consumption that will pave the way for future FI systems and applications. With enhanced sensitivity compared to existing technology we have demonstrated that the capsule can be successfully used to image tissue autofluorescence and targeted fluorescence via fluorophore labelling of tissues. The capsule incorporates a state-of-the-art complementary metal oxide semiconductor single photon avalanche detector imaging array, miniaturised optical isolation, wireless technology and low power design. When in use the capsule consumes only 30.9 mW, and deploys very low-level 468 nm illumination. The device has the potential to replace highly power-hungry intrusive optical fibre based endoscopes and to extend the range of clinical examination below the duodenum. To demonstrate the performance of our capsule, we imaged fluorescence phantoms incorporating principal tissue fluorophores (flavins) and absorbers (haemoglobin). We also demonstrated the utility of marker identification by imaging a 20 μM fluorescein isothiocyanate (FITC) labelling solution on mammalian tissue.
Collapse
Affiliation(s)
| | - James Beeley
- School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, UK
| | - David R S Cumming
- School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, UK
| |
Collapse
|
16
|
Alcantarilla PF, Bartoli A, Chadebecq F, Tilmant C, Lepilliez V. Enhanced imaging colonoscopy facilitates dense motion-based 3D reconstruction. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:7346-9. [PMID: 24111442 DOI: 10.1109/embc.2013.6611255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We propose a novel approach for estimating a dense 3D model of neoplasia in colonoscopy using enhanced imaging endoscopy modalities. Estimating a dense 3D model of neoplasia is important to make 3D measurements and to classify the superficial lesions in standard frameworks such as the Paris classification. However, it is challenging to obtain decent dense 3D models using computer vision techniques such as Structure-from-Motion due to the lack of texture in conventional (white light) colonoscopy. Therefore, we propose to use enhanced imaging endoscopy modalities such as Narrow Band Imaging and chromoendoscopy to facilitate the 3D reconstruction process. Thanks to the use of these enhanced endoscopy techniques, visualization is improved, resulting in more reliable feature tracks and 3D reconstruction results. We first build a sparse 3D model of neoplasia using Structure-from-Motion from enhanced endoscopy imagery. Then, the sparse reconstruction is densified using a Multi-View Stereo approach, and finally the dense 3D point cloud is transformed into a mesh by means of Poisson surface reconstruction. The obtained dense 3D models facilitate classification of neoplasia in the Paris classification, in which the 3D size and the shape of the neoplasia play a major role in the diagnosis.
Collapse
|
17
|
|
18
|
Singh R, Jayanna M, Navadgi S, Ruszkiewicz A, Saito Y, Uedo N. Narrow-band imaging with dual focus magnification in differentiating colorectal neoplasia. Dig Endosc 2013; 25 Suppl 2:16-20. [PMID: 23617643 DOI: 10.1111/den.12075] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/09/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Real-time optical diagnosis of colorectal polyps may lead to substantial time and cost savings and could potentially reduce complications associated with polypectomy. We prospectively assessed the utility of a novel narrow-band imaging (NBI) system with dual focus magnification (DF) in differentiating colorectal polyps in consecutive patients undergoing colonoscopy. PATIENTS AND METHODS All procedures were carried out with a prototype 190 series Exera III NBI system with Dual Focus capability. Histology of each polyp was predicted in real time with NBI-DF based on the modified Sano's classification with a confidence level (low/high). NBI-DF diagnosis was then compared to the final (blinded) histopathology results. Primary endpoint was the accuracy of endoscopic prediction with the modified Sano's classification of all polyps when they were diagnosed with high confidence. Secondary endpoints were the accuracy of post-polypectomy surveillance intervals for diminutive polyps(≤ 5 mm). A total of 164 polyps in 87 patients (53 males) with a mean age of 63 (range 28-86) years were evaluated. RESULTS 149 polyps were diagnosed with high confidence on endoscopic prediction, out of which 80 were diminutive, 31 small (6-9 mm) and 38 large (>10 mm). Overall accuracy of NBI-DF compared to final histopathology was 97%. The accuracy for post-polypectomy surveillance interval based on the endoscopic prediction was 97%. The NPV for diminutive rectosigmoid polyps for adenomatous histology was 100%. CONCLUSION In this preliminary feasibility study, NBI-DF permitted prediction of histology of colorectal polyps with high accuracy. In addition, both of the secondary endpoints exceeded the ASGE PIVI thresholds for the management of diminutive polyps.
Collapse
Affiliation(s)
- Rajvinder Singh
- Lyell McEwin Hospital, Adelaide, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Singh R, Bhat YM, Thurairajah PH, Shetti MP, Jayanna M, Nind G, Tam W, Walmsey R, Bourke M, Moss A, Chen R, Bampton P, Roberts-Thomson I, Schoeman M, Tucker G. Is narrow band imaging superior to high-definition white light endoscopy in the assessment of diminutive colorectal polyps? J Gastroenterol Hepatol 2013; 28:472-8. [PMID: 23278252 DOI: 10.1111/jgh.12098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIM Diminutive polyps measuring ≤ 5 mm in size constitute 80% of polyps in the colon. We prospectively assessed the performance of high-definition white light endoscopy (hWLE) and narrow band imaging (NBI) in differentiating diminutive colorectal polyps. METHODS In this prospective, multicenter study, videos of 50 diminutive polyps (31 hyperplastic, 19 adenomatous) in hWLE followed by NBI (total 100 videos) were initially obtained and placed in random order into five separate folders (each folder 20 videos). Eight endoscopists were then invited to predict the histology (each endoscopist 100 videos, 800 video assessments in all). Polyps were classified into types 1-3 (hyperplastic) and type 4 (adenoma). Feedback on individual performance was given after each folder (20 videos) was assessed. RESULTS The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy in differentiating hyperplastic from adenomatous polyps by hWLE (400 videos) and NBI (400 videos) were 67.8%, 90.7%, 81.7%, 82.1%, and 82.0%; and 82.2%, 81.5%, 73.1%, 88.2%, and 81.8%, respectively. In the pretest and post-test analysis, the accuracy with NBI improved markedly from 68.8% to 91.3% (P = 0.001) compared with hWLE, 76.3-78.8% (P = 0.850). Overall, the interobserver agreement was 0.46 for hWLE (moderate) and 0.64 for NBI (good). CONCLUSIONS NBI was as accurate as hWLE in differentiating diminutive colorectal polyps. Once a learning curve was reached, NBI achieved significantly higher accuracies with good interobserver agreement. Using a simplified classification, a didactic learning session and feedback on performance, diminutive colorectal polyps could be predicted with high accuracies with NBI.
Collapse
Affiliation(s)
- Rajvinder Singh
- Gastroenterology Unit, Division of Medicine, Lyell McEwin Hospital, University of Adelaide, Adelaide, South Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Romero RV, Mahadeva S. Factors influencing quality of bowel preparation for colonoscopy. World J Gastrointest Endosc 2013; 5:39-46. [PMID: 23424015 PMCID: PMC3574611 DOI: 10.4253/wjge.v5.i2.39] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/08/2012] [Accepted: 12/01/2012] [Indexed: 02/05/2023] Open
Abstract
Recent technological advances in colonoscopy have led to improvements in both image enhancement and procedural performance. However, the utility of these technological advancements remain dependent on the quality of bowel preparation during colonoscopy. Poor bowel preparation has been shown to be associated with lower quality indicators of colonoscopy performance, such as reduced cecal intubation rates, increased patient discomfort and lower adenoma detection. The most popular bowel preparation regimes currently used are based on either Polyethylene glycol-electrolyte, a non-absorbable solution, or aqueous sodium phosphate, a low-volume hyperosmotic solution. Statements from various international societies and several reviews have suggested that the efficacy of bowel preparation regimes based on both purgatives are similar, although patients’ compliance with these regimes may differ somewhat. Many studies have now shown that factors other than the type of bowel preparation regime used, can influence the quality of bowel preparation among adult patients undergoing colonoscopy. These factors can be broadly categorized as either patient-related or procedure-related. Studies from both Asia and the West have identified patient-related factors such as an increased age, male gender, presence of co-morbidity and socio-economic status of patients to be associated with poor bowel preparation among adults undergoing routine out-patient colonoscopy. Additionally, procedure-related factors such as adherence to bowel preparation instructions, timing of bowel purgative administration and appointment waiting times for colonoscopy are recognized to influence the quality of colon cleansing. Knowledge of these factors should aid clinicians in modifying bowel preparation regimes accordingly, such that the quality of colonoscopy performance and delivery of service to patients can be optimised.
Collapse
Affiliation(s)
- Ronald V Romero
- Ronald V Romero, Division of Gastroenterology, Department of Medicine, University Malaya Medical Centre, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
21
|
Singh R, Nordeen N, Mei SLCY, Kaffes A, Tam W, Saito Y. West meets East: preliminary results of narrow band imaging with optical magnification in the diagnosis of colorectal lesions: a multicenter Australian study using the modified Sano's classification. Dig Endosc 2011; 23 Suppl 1:126-30. [PMID: 21535218 DOI: 10.1111/j.1443-1661.2011.01107.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Narrow band imaging with optical magnification (NBI-Z) enables mucosal morphology to be assessed in real time by using light with narrowed band width and magnification of up to 115×. METHODS Colorectal lesions detected were assessed with NBI-Z. Histology was predicted using the modified Sano's classification based on capillary network patterns (cn); type I: absent cn (hyperplastic polyp), type II: cn present, surrounding mucosal glands (adenoma), type IIIa: high density cn with tortuosity and lack of uniformity (intramucosal cancer) and type IIIb: nearly avascular cn (invasive cancer). Each lesion was also graded with a confidence level (low/high). High-definition videos (mean 28.2 s; range 12-55) of each lesion assessed with NBI-Z were then taken. This was followed by polypectomy, endoscopic or surgical resection. NBI-Z diagnosis was compared with the final histopathology. To test for interobserver agreement, an endoscopist blinded to the video acquisition process/histology was invited to grade the videos. RESULTS A total of 50 lesions (2 assessors: 100 studies), with an average size of 8.4 mm (range 3-30), in 32 patients were assessed. Twenty were hyperplastic, 25 adenomas, 2 intramucosal and 3 invasive cancers of which 19 were located in the right and 31 in the left colon. The overall accuracy of NBI-Z in predicting histology was 90%, which increased to 95% (88/93) when lesions were predicted with high confidence. The sensitivity (Sn), specificity (Sp), positive (PPV) and negative predictive values (NPV) in differentiating neoplastic from non-neoplastic lesions with high confidence were 98%, 89%, 93% and 97%, respectively, while the Sn, Sp, PPV and NPV in predicting endoscopic resectability (type II, IIIa vs type I, IIIb) was 100%, 90%, 93% and 100%, respectively. The interobserver agreement between both assessors (κ value) was substantial at 0.89. CONCLUSIONS Using confidence levels, NBI-Z permits prediction of colorectal neoplasia with high accuracies and might allow prompt decisions to be made if a lesion should be left in situ, resected and discarded or biopsied. This approach might lead to substantial time and cost savings and could potentially reduce complications associated with polypectomy and endoscopic resections.
Collapse
Affiliation(s)
- Rajvinder Singh
- Lyell McEwin Hospital, Elizabeth Vale, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|