1
|
Goodrich JA, Walker DI, He J, Lin X, Baumert BO, Hu X, Alderete TL, Chen Z, Valvi D, Fuentes ZC, Rock S, Wang H, Berhane K, Gilliland FD, Goran MI, Jones DP, Conti DV, Chatzi L. Metabolic Signatures of Youth Exposure to Mixtures of Per- and Polyfluoroalkyl Substances: A Multi-Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27005. [PMID: 36821578 PMCID: PMC9945578 DOI: 10.1289/ehp11372] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Exposure to per- and polyfluoroalkyl substances (PFAS) is ubiquitous and has been associated with an increased risk of several cardiometabolic diseases. However, the metabolic pathways linking PFAS exposure and human disease are unclear. OBJECTIVE We examined associations of PFAS mixtures with alterations in metabolic pathways in independent cohorts of adolescents and young adults. METHODS Three hundred twelve overweight/obese adolescents from the Study of Latino Adolescents at Risk (SOLAR) and 137 young adults from the Southern California Children's Health Study (CHS) were included in the analysis. Plasma PFAS and the metabolome were determined using liquid-chromatography/high-resolution mass spectrometry. A metabolome-wide association study was performed on log-transformed metabolites using Bayesian regression with a g-prior specification and g-computation for modeling exposure mixtures to estimate the impact of exposure to a mixture of six ubiquitous PFAS (PFOS, PFHxS, PFHpS, PFOA, PFNA, and PFDA). Pathway enrichment analysis was performed using Mummichog and Gene Set Enrichment Analysis. Significance across cohorts was determined using weighted Z -tests. RESULTS In the SOLAR and CHS cohorts, PFAS exposure was associated with alterations in tyrosine metabolism (meta-analysis p = 0.00002 ) and de novo fatty acid biosynthesis (p = 0.03 ), among others. For example, when increasing all PFAS in the mixture from low (∼ 30 th percentile) to high (∼ 70 th percentile), thyroxine (T4), a thyroid hormone related to tyrosine metabolism, increased by 0.72 standard deviations (SDs; equivalent to a standardized mean difference) in the SOLAR cohort (95% Bayesian credible interval (BCI): 0.00, 1.20) and 1.60 SD in the CHS cohort (95% BCI: 0.39, 2.80). Similarly, when going from low to high PFAS exposure, arachidonic acid increased by 0.81 SD in the SOLAR cohort (95% BCI: 0.37, 1.30) and 0.67 SD in the CHS cohort (95% BCI: 0.00, 1.50). In general, no individual PFAS appeared to drive the observed associations. DISCUSSION Exposure to PFAS is associated with alterations in amino acid metabolism and lipid metabolism in adolescents and young adults. https://doi.org/10.1289/EHP11372.
Collapse
Affiliation(s)
- Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jingxuan He
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xiangping Lin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Xin Hu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zoe C Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sarah Rock
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hongxu Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University, New York, New York, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael I Goran
- Department of Pediatrics, Children's Hospital Los Angeles, Saban Research Institute, Los Angeles, California, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Wang C, Li A, Cong R, Qi H, Wang W, Zhang G, Li L. Cis- and Trans-variations of Stearoyl-CoA Desaturase Provide New Insights into the Mechanisms of Diverged Pattern of Phenotypic Plasticity for Temperature Adaptation in Two Congeneric Oyster Species. Mol Biol Evol 2023; 40:6994358. [PMID: 36661848 PMCID: PMC9949715 DOI: 10.1093/molbev/msad015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The evolution of phenotypic plasticity plays an essential role in adaptive responses to climate change; however, its regulatory mechanisms in marine organisms which exhibit high phenotypic plasticity still remain poorly understood. The temperature-responsive trait oleic acid content and its major gene stearoyl-CoA desaturase (Scd) expression have diverged in two allopatric congeneric oyster species, cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata. In this study, genetic and molecular methods were used to characterize fatty acid desaturation and membrane fluidity regulated by oyster Scd. Sixteen causative single-nucleotide polymorphisms (SNPs) were identified in the promoter/cis-region of the Scd between wild C. gigas and C. angulata. Further functional experiments showed that an SNP (g.-333C [C. gigas allele] >T [C. angulata allele]) may influence Scd transcription by creating/disrupting the binding motif of the positive trans-factor Y-box factor in C. gigas/C. angulata, which mediates the higher/lower constitutive expression of Scd in C. gigas/C. angulata. Additionally, the positive trans-factor sterol-regulatory element-binding proteins (Srebp) were identified to specifically bind to the promoter of Scd in both species, and were downregulated during cold stress in C. gigas compared to upregulated in C. angulata. This partly explains the relatively lower environmental sensitivity (plasticity) of Scd in C. gigas. This study serves as an experimental case to reveal that both cis- and trans-variations shape the diverged pattern of phenotypic plasticity, which provides new insights into the formation of adaptive traits and the prediction of the adaptive potential of marine organisms to future climate change.
Collapse
Affiliation(s)
- Chaogang Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,University of Chinese Academy of Sciences, Beijing, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Haigang Qi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing, China,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China,National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Corresponding author: E-mail:
| |
Collapse
|
3
|
Dong Y, Xie Z, You C, Li M, Li Y, Zhao J, Xie D, Wang S, Li Y. GPR120–ERK1–Srebp1c signaling pathway regulates long-chain polyunsaturated fatty acids biosynthesis in marine teleost Siganus canaliculatus. Comp Biochem Physiol B Biochem Mol Biol 2022; 264:110815. [DOI: 10.1016/j.cbpb.2022.110815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
|
4
|
Zampedri C, Martínez-Flores WA, Melendez-Zajgla J. The Use of Zebrafish Xenotransplant Assays to Analyze the Role of lncRNAs in Breast Cancer. Front Oncol 2021; 11:687594. [PMID: 34123857 PMCID: PMC8190406 DOI: 10.3389/fonc.2021.687594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer represents a great challenge since it is the first cause of death by cancer in women worldwide. LncRNAs are a newly described class of non-coding RNAs that participate in cancer progression. Their use as cancer markers and possible therapeutic targets has recently gained strength. Animal xenotransplants allows for in vivo monitoring of disease development, molecular elucidation of pathogenesis and the design of new therapeutic strategies. Nevertheless, the cost and complexities of mice husbandry makes medium to high throughput assays difficult. Zebrafishes (Danio rerio) represent a novel model for these assays, given the ease with which xenotransplantation trials can be performed and the economic and experimental advantages it offers. In this review we propose the use of xenotransplants in zebrafish to study the role of breast cancer lncRNAs using low to medium high throughput assays.
Collapse
Affiliation(s)
- Cecilia Zampedri
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | | | - Jorge Melendez-Zajgla
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| |
Collapse
|
5
|
Wu L, Liu Y, Zhao Y, Li M, Guo L. Targeting DUSP7 signaling alleviates hepatic steatosis, inflammation and oxidative stress in high fat diet (HFD)-fed mice via suppression of TAK1. Free Radic Biol Med 2020; 153:140-158. [PMID: 32311490 DOI: 10.1016/j.freeradbiomed.2020.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
Abstract
The non-alcoholic fatty liver disease (NAFLD), as a critical liver disease, is still lack of effective treatments because the molecular mechanism revealing the NAFLD pathogenesis remains unclear. Dual specific phosphatase 6 (DUSP7) shows effects on inflammatory response and is a negative feedback mechanism of the mitogen-activated protein kinase (MAPK) superfamily, which are critical factors in regulating NAFLD progression. However, the effects of DUSP7 on hepatic steatosis are still not fully understood. Here, we found that DUSP7 functioned as a negative regulator of NAFLD and in various metabolic disorders. DUSP7 expression was markedly reduced in liver samples from patients with simple hepatic steatosis or non-alcoholic steatohepatitis (NASH), as well as in liver tissues from high fat diet (HFD)-challenged mice or genetically obese (ob/ob) mice. DUSP7 knockout markedly accelerated insulin resistance, glucose intolerance, liver dysfunction, fibrosis and hepatic steatosis in HFD-fed mice. In addition, inflammatory response was significantly exacerbated in HFD-challenged mice with DUSP7 deletion, which was associated with the elevated activation of nuclear factor-κB (NF-κB) and MAPKs signaling pathways. Moreover, oxidative stress was detected in liver of HFD-induced mice, and this phenomenon was aggravated in mice with DUSP7 knockout. Importantly, we demonstrated that DUSP7 physically interacted with transforming growth factor β (TGF-β)-activated kinase (TAK1). DUSP7 deletion considerably promoted the activation of TAK1 in mice after HFD feeding, contributing to the lipid deposition, inflammatory response and reactive oxygen species (ROS) production. Taken together, DUSP7 might function as a protective factor against NAFLD development and metabolic disorder through alleviating dyslipidemia, inflammation and oxidative stress by directly interacting with TAK1 in hepatocytes, which was involved in the suppression of fibrosis. Thus, we may provide an effective strategy for the treatment of hepatic steatosis via targeting DUSP7.
Collapse
Affiliation(s)
- Liping Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yongcun Liu
- Department of Oncology, The First People's Hospital of Xianyang, Xianyang, 712000, China
| | - Yuan Zhao
- Department of Gerontology, Shaanxi Provincial People's Hospita, Xi'an, 710068, China
| | - Meng Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ling Guo
- Department of Oncology, The First People's Hospital of Xianyang, Xianyang, 712000, China
| |
Collapse
|
6
|
Dong Y, Wang S, You C, Xie D, Jiang Q, Li Y. Hepatocyte nuclear factor 4α (Hnf4α) is involved in transcriptional regulation of Δ6/Δ5 fatty acyl desaturase (Fad) gene expression in marine teleost Siganus canaliculatus. Comp Biochem Physiol B Biochem Mol Biol 2020; 239:110353. [DOI: 10.1016/j.cbpb.2019.110353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 01/21/2023]
|
7
|
Hasanifard L, Sheervalilou R, Majidinia M, Yousefi B. New insights into the roles and regulation of SphK2 as a therapeutic target in cancer chemoresistance. J Cell Physiol 2018; 234:8162-8181. [PMID: 30456838 DOI: 10.1002/jcp.27612] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Chemoresistance is a complicated process developed by most cancers and accounts for the majority of relapse and metastasis in cancer. The main mechanisms of chemoresistance phenotype include increased expression and/or activated drug efflux pumps, altered DNA repair, altered metabolism of therapeutics as well as impaired apoptotic signaling pathways. Aberrant sphingolipid signaling has also recently received considerable attention in chemoresistance. Sphingolipid metabolites regulate main biological processes such as apoptosis, cell survival, proliferation, and differentiation. Two sphingosine kinases, SphK1 and SphK2, convert sphingosine to sphingosine-1-phosphate, an antiapoptotic bioactive lipid mediator. Numerous evidence has revealed the involvement of activated SphK1 in tumorigenesis and resistance, however, contradictory results have been found for the role of SphK2 in these functions. In some studies, overexpression of SphK2 suppressed cell growth and induced apoptosis. In contrast, some others have shown cell proliferation and tumor promotion effect for SphK2. Our understanding of the role of SphK2 in cancer does not have a sufficient integrity. The main focus of this review will be on the re-evaluation of the role of SphK2 in cell death and chemoresistance in light of our new understanding of molecular targeted therapy. We will also highlight the connections between SphK2 and the DNA damage response. Finally, we will provide our insight into the regulatory mechanisms of SphKs by two main categories, micro and long, noncoding RNAs as the novel players of cancer chemoresistance.
Collapse
Affiliation(s)
- Leili Hasanifard
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Moein S, Vaghari-Tabari M, Qujeq D, Majidinia M, Nabavi SM, Yousefi B. MiRNAs and inflammatory bowel disease: An interesting new story. J Cell Physiol 2018; 234:3277-3293. [PMID: 30417350 DOI: 10.1002/jcp.27173] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), as a chronic and recurrent inflammatory disorder, is caused by a dysregulated and aberrant immune response to exposed environmental factors in genetically susceptible individuals. Despite huge efforts in determining the molecular pathogenesis of IBD, an increasing worldwide incidence of IBD has been reported. MicroRNAs (miRNAs) are a set of noncoding RNA molecules that are about 22 nucleotides long, and these molecules are involved in the regulation of the gene expression. By clarifying the important role of miRNAs in a number of diseases, their role was also considered in IBD; numerous studies have been performed on this topic. In this review, we attempt to summarize a number of studies and discuss some of the recent developments in the roles of miRNAs in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mostafa Vaghari-Tabari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Irantab.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Al-Muzafar HM, Amin KA. Thiazolidinedione induces a therapeutic effect on hepatosteatosis by regulating stearoyl-CoA desaturase-1, lipase activity, leptin and resistin. Exp Ther Med 2018; 16:2938-2948. [PMID: 30214514 PMCID: PMC6125847 DOI: 10.3892/etm.2018.6563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatosteatosis is a disease present worldwide, which presents a number of health problems. Recently, thiazolidinedione (TZD) has been used as a therapy for lipid disorders. The present study demonstrates the potential of TZD as a treatment for hepatosteatosis and its mechanism of action, particularly focusing on its role in lipid metabolism. A total of 60 (80-90 g) rats were divided into three groups: A normal group with a standard diet, a high-fat, high-carbohydrate diet (HFCD) group or a HFCD+TZD group (n=20/group). The HFCD induced hepatosteatosis over a period of 12 weeks and the HFCD+TZD group were administered TZD in weeks 13-16. Blood and tissue samples were collected to measure hepatic function, the lipid profile, metabolism and hormone biomarkers, including serum triglyceride (TG), lipoprotein lipase (LPL), stearoyl-CoA desaturase (SCD-1), leptin and resistin. The HFCD-fed rats exhibited a significant increase in serum TG, total cholesterol, low-density lipoproteins, alanine transaminase and bilirubin compared with the normal group as well as a significant decrease in high-density lipoprotein. In addition, serum leptin and resistin were significantly elevated in the HFCD group compared with the normal group. The administration of TZD significantly increased SCD-1 activity and significantly inhibited LPL activity. It also attenuated the changes in the lipid profiles and normalized serum leptin and resistin levels. The results of the present study indicated that HFCD induced lipid abnormalities associated with hypertriglyceridemia, hypercholesterolemia and hepatosteatosis. These changes resulted from disruption to leptin and resistin, which may be due to alterations in LPL and SCD-1 activity. TZD mitigated the effects of HFCD-induced hepatosteatosis, indicating a possible regulatory effect of TZD in the development of hepatosteatosis. The authors suggest that the manipulation of SCD-1 and lipase by TZD may be useful as a treatment for hepatosteatosis.
Collapse
Affiliation(s)
- Hessah Mohammed Al-Muzafar
- Department of Chemistry and Biochemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Kamal Adel Amin
- Department of Chemistry and Biochemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
10
|
Mirza-Aghazadeh-Attari M, Darband SG, Kaviani M, Mihanfar A, Aghazadeh Attari J, Yousefi B, Majidinia M. DNA damage response and repair in colorectal cancer: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2018; 69:34-52. [PMID: 30055507 DOI: 10.1016/j.dnarep.2018.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022]
Abstract
DNA damage response, a key factor involved in maintaining genome integrity and stability, consists of several kinase-dependent signaling pathways, which sense and transduce DNA damage signal. The severity of damage appears to determine DNA damage responses, which can include cell cycle arrest, damage repair and apoptosis. A number of recent studies have demonstrated that defection in signaling through this network is thought to be an underlying mechanism behind the development and progression of various types of human malignancies, including colorectal cancer. In this review, colorectal cancer and its molecular pathology as well as DNA damage response is briefly introduced. Finally, the involvement of key components of this network in the initiation/progression, prognosis, response to treatment and development of drug resistance is comprehensively discussed.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Ainaz Mihanfar
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
11
|
Majidinia M, Aghazadeh J, Jahanban‐Esfahlani R, Yousefi B. The roles of Wnt/β‐catenin pathway in tissue development and regenerative medicine. J Cell Physiol 2018; 233:5598-5612. [DOI: 10.1002/jcp.26265] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research CenterUrmia University of Medical SciencesUrmiaIran
| | - Javad Aghazadeh
- Department of NeurosurgeryUrmia University of Medical SciencesUrmiaIran
| | - Rana Jahanban‐Esfahlani
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| | - Bahman Yousefi
- Stem Cell and Regenerative Medicine InstituteTabriz University of Medical SciencesTabrizIran
- Molecular Targeting Therapy Research GroupFaculty of MedicineTabriz University ofMedical SciencesTabrizIran
| |
Collapse
|
12
|
Liuzzi JP, Narayanan V, Doan H, Yoo C. Effect of zinc intake on hepatic autophagy during acute alcohol intoxication. Biometals 2018; 31:217-232. [PMID: 29392448 DOI: 10.1007/s10534-018-0077-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/26/2018] [Indexed: 01/20/2023]
Abstract
Autophagy is a conserved mechanism that plays a housekeeping role by eliminating protein aggregates and damaged organelles. Recent studies have demonstrated that acute ethanol intoxication induces hepatic autophagy in mice. The effect of dietary zinc intake on hepatic autophagic flux during ethanol intoxication has not been evaluated using animal models. Herein, we investigated whether zinc deficiency and excess can affect autophagic flux in the liver in mice and in human hepatoma cells acutely exposed to ethanol. A mouse model of binge ethanol feeding was utilized to analyze the effect of low, adequate, and high zinc intake on hepatic autophagic flux during ethanol intoxication. Autophagic flux was inferred by analyzing LC3II/LC3I ratio, protein levels of p62/SQSTM1, Beclin1 and Atg7, and phosphorylation of 4EBP1. In addition, the degradation of the fusion protein LC3-GFP and the formation of autophagosomes and autolysosomes were evaluated in cells. Ethanol treatment stimulated autophagy in mice and cells. High zinc intake resulted in enhanced autophagy in mice exposed to ethanol. Conversely, zinc deficiency was consistently associated with impaired ethanol-induced autophagy in mice and cells. Zinc-deficient mice exhibited a high degree of ethanol-driven steatosis. Furthermore, zinc depletion increased apoptosis in cells exposed to ethanol. The results of this study suggest that adequate zinc intake is necessary for proper stimulation of autophagy by ethanol. Poor zinc status is commonly found among alcoholics and could likely contribute to faulty autophagy.
Collapse
Affiliation(s)
- Juan P Liuzzi
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW, 8ST, AHC5-325, Miami, FL, 33199, USA.
| | - Vijaya Narayanan
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW, 8ST, AHC5-325, Miami, FL, 33199, USA
| | - Huong Doan
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 SW, 8ST, AHC5-325, Miami, FL, 33199, USA
| | - Changwon Yoo
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| |
Collapse
|
13
|
Yousefi B, Azimi A, Majidinia M, Shafiei-Irannejad V, Badalzadeh R, Baradaran B, Zarghami N, Samadi N. Balaglitazone reverses P-glycoprotein-mediated multidrug resistance via upregulation of PTEN in a PPARγ-dependent manner in leukemia cells. Tumour Biol 2017; 39:1010428317716501. [DOI: 10.1177/1010428317716501] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ako Azimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei-Irannejad
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Jahanban-Esfahlan R, Seidi K, Banimohamad-Shotorbani B, Jahanban-Esfahlan A, Yousefi B. Combination of nanotechnology with vascular targeting agents for effective cancer therapy. J Cell Physiol 2017; 233:2982-2992. [PMID: 28608554 DOI: 10.1002/jcp.26051] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/12/2017] [Indexed: 12/28/2022]
Abstract
As a young science, nanotechnology promptly integrated into the current oncology practice. Accordingly, various nanostructure particles were developed to reduce drug toxicity and allow the targeted delivery of various diagnostic and therapeutic compounds to the cancer cells. New sophisticated nanosystems constantly emerge to improve the performance of current anticancer modalities. Targeting tumor vasculature is an attractive strategy to fight cancer. Though the idea was swiftly furthered from basic science to the clinic, targeting tumor vasculature had a limited potential in patients, where tumors relapse due to the development of multiple drug resistance and metastasis. The aim of this review is to discuss the advantages of nanosystem incorporation with various vascular targeting agents, including (i) endogen anti-angiogenic agents; (ii) inhibitors of angiogenesis-related growth factors; (iii) inhibitors of tyrosine kinase receptors; (iv) inhibitors of angiogenesis-related signaling pathways; (v) inhibitors of tumor endothelial cell-associated markers; and (vi) tumor vascular disrupting agents. We also review the efficacy of nanostructures as natural vascular targeting agents. The efficacy of each approach in cancer therapy is further discussed.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran.,Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Molecular Targeting Therapy Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Majidinia M, Yousefi B. Breast tumor stroma: A driving force in the development of resistance to therapies. Chem Biol Drug Des 2017; 89:309-318. [PMID: 28042683 DOI: 10.1111/cbdd.12893] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 09/15/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most common cancer and the second leading cause of cancer-related death in women worldwide. In spite of huge advancements in early detection and ever-increasing knowledge of breast cancer biology, approximately 30% of patients with early-stage breast cancer experience disease recurrence. Most patients are chemosensitive and cancer free immediately after the treatment. About 50% to 70% of breast cancer patients, however, will relapse within 1 year. Such a relapse is usually concomitant with adenocarcinoma cells acquiring a chemoresistant phenotype. Both de novo and acquired chemoresistance are poorly understood and present a major burden in the treatment of breast cancer. Although, previously, chemoresistance was largely linked to genetic alterations within the cancer cells, recent investigations are indicating that chemoresistance can also be associated with the tumor microenvironment. Nowadays, it is widely believed that tumor microenvironment is a key player in tumor progression and response to treatment. In this study, we will review the interactions of breast tumor cells with their microenvironment, present the latest research on the resistance mediated by the stromal component in breast cancer, and discuss the potential therapeutic strategies that can be exploited to treat breast cancers by targeting tumor microenvironment.
Collapse
Affiliation(s)
- Maryam Majidinia
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences, Urmia, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Long non-coding RNAs in cancer drug resistance development. DNA Repair (Amst) 2016; 45:25-33. [PMID: 27427176 DOI: 10.1016/j.dnarep.2016.06.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023]
Abstract
The presence or emergence of chemoresistance in tumor cells is a major burden in cancer therapy. While drug resistance is a multifactorial phenomenon arising from altered membrane transport of drugs, altered drug metabolism, altered DNA repair, reduced apoptosis rate and alterations of drug metabolism, it can also be linked to genetic and epigenetic factors. Long non-coding RNAs (lncRNAs) have important regulatory roles in many aspects of genome function including gene transcription, splicing, and epigenetics as well as biological processes involved in cell cycle, cell differentiation, development, and pluripotency. As such, it may not be surprising that some lncRNAs have been recently linked to carcinogenesis and drug resistance/sensitivity. Research is accelerating to decipher the exact molecular mechanism of lncRNA-regulated drug resistance and its therapeutic implications. In this article, we will review the structure, biogenesis, and mode of action of lncRNAs. Then, the involvement of lncRNAs in drug resistance will be discussed in detail.
Collapse
|
17
|
Yousefi B, Samadi N, Baradaran B, Shafiei-Irannejad V, Zarghami N. Peroxisome Proliferator-Activated Receptor Ligands and Their Role in Chronic Myeloid Leukemia: Therapeutic Strategies. Chem Biol Drug Des 2016; 88:17-25. [PMID: 26841308 DOI: 10.1111/cbdd.12737] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Imatinib therapy remains the gold standard for treatment of chronic myeloid leukemia; however, the acquired resistance to this therapeutic agent in patients has urged the scientists to devise modalities for overcoming this chemoresistance. For this purpose, initially therapeutic agents with higher tyrosine kinase activity were introduced, which had the potential for inhibiting even mutant forms of Bcr-Abl. Furthermore, coupling imatinib with peroxisome proliferator-activated receptor ligands also showed beneficial effects in chronic myeloid leukemia cell proliferation. These combination protocols inhibited cell growth and induced apoptosis as well as differentiation in chronic myeloid leukemia cell lines. In addition, peroxisome proliferator-activated receptors ligands increased imatinib uptake by upregulating the expression of human organic cation transporter 1. Taken together, peroxisome proliferator-activated receptors ligands are currently being considered as novel promising therapeutic candidates for chronic myeloid leukemia treatment, because they can synergistically enhance the efficacy of imatinib. In this article, we reviewed the potential of peroxisome proliferator-activated receptors ligands for use in chronic myeloid leukemia treatment. The mechanism of action of these therapeutics modalities are also presented in detail.
Collapse
Affiliation(s)
- Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shafiei-Irannejad
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Sato D, Oda K, Kusunoki M, Nishina A, Takahashi K, Feng Z, Tsutsumi K, Nakamura T. PPARγ activation alters fatty acid composition in adipose triglyceride, in addition to proliferation of small adipocytes, in insulin resistant high-fat fed rats. Eur J Pharmacol 2016; 773:71-7. [PMID: 26825545 DOI: 10.1016/j.ejphar.2016.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 11/27/2022]
Abstract
It was reported that adipocyte size is potentially correlated in part to amount of long chain polyunsaturated fatty acids (PUFAs) and insulin resistance because several long chain PUFAs can be ligands of peroxisome proliferator-activated receptors (PPARs). In our previous study, marked reduction of PUFAs was observed in insulin-resistant high-fat fed rats, which may indicate that PUFAs are consumed to improve insulin resistance. Although PPARγ agonist, well known as an insulin sensitizer, proliferates small adipocytes, the effects of PPARγ agonist on FA composition in adipose tissue have not been clarified yet. In the present study, we administered pioglitazone, a PPARγ agonist, to high-fat fed rats, and measured their FA composition of triglyceride fraction in adipose tissue and adipocyte diameters in pioglitazone-treated (PIO) and non-treated (control) rats. Insulin sensitivity was obtained with hyperinsulinemic euglycemic clamp. Average adipocyte diameter in the PIO group were smaller than that in the control one without change in tissue weight. In monounsaturated FAs (MUFAs), 14:1n-5, 16:1n-7, and 18:1n-9 contents in the PIO group were lower than those, respectively, in the control group. In contrast, 22:6n-3, 20:3n-6, 20:4n-6, and 22:4n-6 contents in the PIO group were higher than those, respectively, in the control group. Insulin sensitivity was higher in the PIO group than in the control one. These findings suggest that PPARγ activation lowered MUFAs whereas suppressed most of C20 or C22 PUFAs reduction, and that the change of fatty acid composition may be relevant with increase in small adipocytes.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, 2-2-2, Iida-nishi, Yamagata 990-9585, Japan.
| | - Kanako Oda
- Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, 2-2-2, Iida-nishi, Yamagata 990-9585, Japan
| | - Masataka Kusunoki
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Atsuyoshi Nishina
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan.
| | - Kazuaki Takahashi
- Department of Health and Nutrition, Yamagata Prefectural Yonezawa University of Nutrition Sciences, 6-15-1, Tohrimachi, Yonezawa 992-0025, Japan.
| | - Zhonggang Feng
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16, Johnan, Yonezawa 992-8510, Japan.
| | - Kazuhiko Tsutsumi
- Okinaka Memorial Institute for Medical Research, 2-2-2, Toranomon, Minato-ku, Tokyo 105-8470, Japan.
| | - Takao Nakamura
- Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, 2-2-2, Iida-nishi, Yamagata 990-9585, Japan.
| |
Collapse
|
19
|
Mehdizadeh A, Somi MH, Darabi M, Jabbarpour-Bonyadi M. Extracellular signal-regulated kinase 1 and 2 in cancer therapy: a focus on hepatocellular carcinoma. Mol Biol Rep 2016; 43:107-16. [DOI: 10.1007/s11033-016-3943-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/05/2016] [Indexed: 12/30/2022]
|
20
|
Byagowi S, Naserpour Farivar T, Najafipour R, Sahmani M, Darabi M, Fayezi S, Mirshahvaladi S, Darabi M. Effect of PPARδ agonist on stearoyl-CoA desaturase 1 in human pancreatic cancer cells: role of MEK/ERK1/2 pathway. Can J Diabetes 2015; 39:123-7. [PMID: 25575964 DOI: 10.1016/j.jcjd.2014.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The stearoyl-CoA desaturase 1 (SCD1), also known as Δ9-desaturase, is a regulatory enzyme in the cellular lipid modification process that has been linked to pancreatic cancer and diabetes. The aim of the present study was to investigate the effect of peroxisome proliferative-activated receptor δ (PPARδ) agonist and ERK1/2- and EGF receptor (EGFR)-dependent pathways on the expression of SCD1 in human pancreatic carcinoma cell line PANC-1. METHODS PANC-1 cells cultured in RPMI-1640 were exposed to the commonly used MEK inhibitor PD98059, EGFR-selective inhibitor AG1478, and PPARδ agonist GW0742. Changes in mRNA, protein expression and activity index of SCD1 were then determined using real-time reverse transcription polymerase chain reaction, Western blot and gas liquid chromatography, respectively. RESULTS The activity index and expression of SCD1 (p<0.01) decreased following treatment with PPARδ agonist at both mRNA and protein levels, whereas significant increases were observed after treatment with MEK or EGFR inhibitor. It was also found that the activity index of SCD1 were lower (p<0.01) in the combined treatment compared to the incubation with either inhibitor alone. CONCLUSIONS PPARδ and MEK/ERK1/2- and EGFR-dependent pathways affect the expression and activity of SCD1 in pancreatic cancer cells. Furthermore, the aforementioned kinase signalling pathways were involved in an inhibitory effect on the expression and activity of SCD1 in these cells, possibly via PPARδ activation.
Collapse
Affiliation(s)
- Shima Byagowi
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Taghi Naserpour Farivar
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Najafipour
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Sahmani
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masoud Darabi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Students Research Committee, Faculty of Medicine, Department of Anatomy and Cell Biology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahab Mirshahvaladi
- Department of Biotechnology, Cellular and Molecular and Burns Research Centers, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Darabi
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
21
|
Transcriptional regulation of Δ6-desaturase by peroxisome proliferative-activated receptor δ agonist in human pancreatic cancer cells: role of MEK/ERK1/2 pathway. ScientificWorldJournal 2013; 2013:607524. [PMID: 24294133 PMCID: PMC3832962 DOI: 10.1155/2013/607524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/26/2013] [Indexed: 12/21/2022] Open
Abstract
The Δ6-desaturase (Δ6D), also known as fatty acid desaturase 2, is a regulatory enzyme in de novo fatty acid synthesis, which has been linked to obesity and diabetes. The aim of the present study was to investigate the effect of peroxisome proliferative-activated receptor δ (PPARδ) agonist and MEK/ERK1/2-dependent pathway on the expression of Δ6D in human pancreatic carcinoma cell line PANC-1. PANC-1 cells cultured in RPMI-1640 were exposed to the commonly used ERK1/2 pathway inhibitor PD98059 and PPARδ agonist GW0742. Changes in mRNA and protein expression of Δ6D were then determined using real-time RT-PCR and Western blot, respectively. The expression of Δ6D (P < 0.01) increased following treatment with PPARδ agonist both at mRNA and protein levels, whereas no significant change was observed after treatment with MEK/ERK1/2 pathway inhibitor. It was also found that the increase in the expression of Δ6D in response to GW0742 was significantly inhibited by PD98059 (>40%, P < 0.05) or EGF receptor-selective inhibitor AG1478 (>25%, P < 0.05) pretreatment. PPARδ and MEK/ERK1/2 signaling pathways affect differentially the expression of Δ6D in pancreatic cancer cells. Furthermore, there may be an inhibitory crosstalk between these two regulatory pathways on the mRNA expression of Δ6D and subsequently on Δ6D protein expression.
Collapse
|