1
|
Prabhakar H, Kerr WL, Bock CH, Kong F. Effect of relative humidity, storage days, and packaging on pecan kernel texture: Analyses and modeling. J Texture Stud 2023; 54:115-126. [PMID: 36146907 PMCID: PMC10092868 DOI: 10.1111/jtxs.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 11/27/2022]
Abstract
The studies expounding on the effects of storage conditions on texture changes are limited. The researchers have been proposing methods to measure pecan texture instrumentally. But current protocols and/or attributes fail to address huge variability during experimentation. Additionally, there are no predictive models to estimate changes in pecan texture during storage. This study addresses all the above concerns and investigates the effects of different relative humidity (RH, 30-90%) and packaging material (Polyethylene-Nylon [PEN], polypropylene [PP], low density polyethylene [LDPE], and metallic laminates [ML]) on pecan texture, introducing a rift ratio (F/H or fracturability to hardness ratio) to address variability in the data and predictive model to estimate changes in the textural attribute of pecans during storage. The textural analysis was conducted on pecan cores and intact pecans to measure the area under curve, fracturability, hardness, cohesiveness, chewiness, springiness, and rift ratio. It was observed that values for the rift ratio obtained using the intact pecan method had high R2 (0.72) as compared to the rest of the textural attributes. A three-parameter logistic model was employed to predict pecan texture during storage. The pecans stored at 75, 80, and 90% reached the rift ratio (F/H) of 0.5 at approx. 115, 3, and 0.15 days (~ 4 hr), respectively. Similarly, pecans stored in LDPE, PP, and PEN packs at 80% reached rift ratio (F/H) of 0.5 at approx. 26, 57, and 78 days, respectively. The presence of any kind of package delayed fracturability loss by at least eight folds at 80% RH. The pecans stored in ML did not experience a significant change in textural attributes.
Collapse
Affiliation(s)
- Himanshu Prabhakar
- Department of Food Science & Technology, University of Georgia, Athens, Georgia, USA
| | - William L Kerr
- Department of Food Science & Technology, University of Georgia, Athens, Georgia, USA
| | - Clive H Bock
- Fruit and Tree Nut Research, USDA-ARS-SEFNTRL, Byron, Georgia, USA
| | - Fanbin Kong
- Department of Food Science & Technology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Dong X, Li Y, Zhu R, Wang C, Ge S. Biotreatment of Cr(VI) and pyrene combined water pollution by loofa-immobilized bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45619-45628. [PMID: 33871775 DOI: 10.1007/s11356-021-13893-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Hexavalent chromium (Cr(VI)) and pyrene are toxic pollutants that are difficult to remediate from soils and wastewater. Serratia sp. strains have been previously demonstrated to remove either Cr(VI) or pyrene and here a new isolate, called the Z6 strain, was demonstrated to remove both simultaneously. The removal occurs primarily by Cr(VI) reduction and pyrene biodegradation, and genome analysis suggests the removal mechanisms are the putative chromate reductase and two assumable pathways of pyrene degradation. The Z6 strain effectively removed most Cr(VI) (up to approximately 86%) and pyrene (up to approximately 57%) in seven different types of wastewater after 7 days of biotreatment. Additionally, the carrier loofa used for bacteria immobilization did not change the kinetics of Cr(VI) reduction or pyrene degradation. The carrier loofa was also effective for multiple uses, with removal capacity not being significantly affected over the first seven cycles with the same carrier loofa. These results provide data for developing practical biotreatment applications of Cr(VI) and pyrene contaminated sites.
Collapse
Affiliation(s)
- Xinjiao Dong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang Province, China
| | - Yaru Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang Province, China
| | - Rui Zhu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang Province, China
| | - Chuanhua Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang Province, China
| | - Shimei Ge
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
3
|
Yakasai HM, Rahman MF, Manogaran M, Yasid NA, Syed MA, Shamaan NA, Shukor MY. Microbiological Reduction of Molybdenum to Molybdenum Blue as a Sustainable Remediation Tool for Molybdenum: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5731. [PMID: 34071757 PMCID: PMC8198738 DOI: 10.3390/ijerph18115731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022]
Abstract
Molybdenum (Mo) microbial bioreduction is a phenomenon that is beginning to be recognized globally as a tool for the remediation of molybdenum toxicity. Molybdenum toxicity continues to be demonstrated in many animal models of spermatogenesis and oogenesis, particularly those of ruminants. The phenomenon has been reported for more than 100 years without a clear understanding of the reduction mechanism, indicating a clear gap in the scientific knowledge. This knowledge is not just fundamentally important-it is specifically important in applications for bioremediation measures and the sustainable recovery of metal from industrial or mine effluent. To date, about 52 molybdenum-reducing bacteria have been isolated globally. An increasing number of reports have also been published regarding the assimilation of other xenobiotics. This phenomenon is likely to be observed in current and future events in which the remediation of xenobiotics requires microorganisms capable of degrading or transforming multi-xenobiotics. This review aimed to comprehensively catalogue all of the characterizations of molybdenum-reducing microorganisms to date and identify future opportunities and improvements.
Collapse
Affiliation(s)
- Hafeez Muhammad Yakasai
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University, Kano PMB 3011, Nigeria
| | - Mohd Fadhil Rahman
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| | - Motharasan Manogaran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| | - Mohd Arif Syed
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| | - Nor Aripin Shamaan
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
| | - Mohd Yunus Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| |
Collapse
|
4
|
Xie Z, Peng Y, Li C, Luo X, Wei Z, Li X, Yao Y, Fang T, Huang L. Growth kinetics of Staphylococcus aureus and background microorganisms in camel milk. J Dairy Sci 2020; 103:9958-9968. [PMID: 32981731 DOI: 10.3168/jds.2020-18616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/02/2020] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is a common foodborne pathogen that is ubiquitous in nature. Consumption of contaminated foods, such as dairy products, can lead to food poisoning caused by heat-stable staphylococcal toxins that are not easily destroyed during pasteurization. The objective of this study was to investigate the growth kinetics of S. aureus and background microorganisms in camel milk stored at different temperatures between 8 and 43°C using one-step kinetic analysis to estimate the kinetic parameters from the observed growth curves. The growth of S. aureus showed apparent lag, exponential, and stationary phases, whereas no or negligible lag phase was observed for background microorganisms. Data analysis showed that the estimated minimum, optimum, and maximum growth temperatures were 5.9, 42.0, and 49.2°C for S. aureus, and 3.0, 38.6, and 49.2°C for the background microorganisms, respectively. The estimated optimum specific growth rate was higher for S. aureus (1.24 h-1) than for background microorganisms (0.995 h-1). This study found that camel milk may inhibit the growth of S. aureus, as it exhibits a lower specific growth rate than that in cow milk or cooked potato. It also has a longer lag phase than that in cow milk at comparable temperature ranges. This unique property is probably related to the presence of some antimicrobial compounds naturally occurring in camel milk. Validation of kinetic parameters and models showed that the root mean square error of prediction was only 0.5 log cfu/mL for S. aureus and background microorganisms, suggesting that the models are reasonably accurate. These models can be used for conducting risk assessments of S. aureus and predicting the general microbiological shelf life of camel milk to prevent foodborne staphylococcal poisoning.
Collapse
Affiliation(s)
- Zhaopeng Xie
- School of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350001, Fujian Province, China
| | - Yabo Peng
- School of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350001, Fujian Province, China
| | - Changcheng Li
- School of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350001, Fujian Province, China
| | - Xiaojuan Luo
- School of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350001, Fujian Province, China
| | - Zhaoyi Wei
- School of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350001, Fujian Province, China
| | - Xiaoting Li
- School of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350001, Fujian Province, China
| | - Yukun Yao
- School of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350001, Fujian Province, China
| | - Ting Fang
- School of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350001, Fujian Province, China.
| | - Lihan Huang
- Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, USDA Agricultural Research Service, Wyndmoor, PA 19038.
| |
Collapse
|
5
|
Hernández-Aquino S, Maldonado Simán EDEJ, Miranda-Romero LA, Alarcón Zuñiga B. Meat Native Lactic Acid Bacteria Capable to Inhibit Salmonella sp. and Escherichia coli. Biocontrol Sci 2020; 25:107-112. [PMID: 32507788 DOI: 10.4265/bio.25.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In this study, lactic acid bacteria (LAB) strains were isolated from ground beef, and it was analyzed if they have any effect on the growth of two reference bacteria (Salmonella sp. and Escherichia coli). It was found that five isolates showed an inhibitory effect in both reference bacteria by spot at the lawn assay. These bacteria were selected to perform growth kinetics in co-culture to determine if they modify the growth parameters of the reference bacteria. Subsequently, LAB cultures and three treatments (crude extract, thermally treated and thermally treated with neutral pH) of cells free supernatants (CFS) were screened by the agar well diffusion assay. In co-culture, selected LAB altered the growth rate and reduce the maximum population of both reference bacteria. While, LAB cultures and CFS also showed antimicrobial activity, and there was no significant difference among CFS treatments. LAB isolated from ground beef showed an antimicrobial effect against the reference bacteria that could be used for meat biopreservation purposes.
Collapse
|
6
|
Dhar M, Bhattacharya P. Comparison of the logistic and the Gompertz curve under different constraints. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS 2018. [DOI: 10.1080/09720510.2018.1488414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M. Dhar
- Department of Mathematics, National Institute of Technology Agartala, Jirania Agartala, 799046, Tripura, India,
| | - P. Bhattacharya
- Department of Mathematics, National Institute of Technology Agartala, Jirania Agartala, 799046, Tripura, India
| |
Collapse
|
7
|
Fujikawa H, Munakata K, Sakha MZ. Development of a competition model for microbial growth in mixed culture. Biocontrol Sci 2015; 19:61-71. [PMID: 24975409 DOI: 10.4265/bio.19.61] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
A novel competition model for describing bacterial growth in mixed culture was developed in this study. Several model candidates were made with our logistic growth model that precisely describes the growth of a monoculture of bacteria. These candidates were then evaluated for the usefulness in describing growth of two competing species in mixed culture using Staphylococcus aureus, Escherichia coli, and Salmonella. Bacterial cells of two species grew at initial doses of 10(3), 10(4), and 10(5) CFU/g at 28ºC. Among the candidates, a model where the Lotka-Volterra model, a general competition model in ecology, was incorporated as a new term in our growth model was the best for describing all types of growth of two competitors in mixed culture. Moreover, the values for the competition coefficient in the model were stable at various combinations of the initial populations of the species. The Baranyi model could also successfully describe the above types of growth in mixed culture when it was coupled with the Gimenez and Dalgaard model. However, the values for the competition coefficients in the competition model varied with the conditions. The present study suggested that our model could be a basic model for describing microbial competition.
Collapse
Affiliation(s)
- Hiroshi Fujikawa
- Laboratory of Veterinary Public Health, Faculty of Agriculture Tokyo University of Agriculture and Technology
| | | | | |
Collapse
|
8
|
Fujikawa H. Application of the new logistic model to microbial growth prediction in food. Biocontrol Sci 2011; 16:47-54. [PMID: 21719989 DOI: 10.4265/bio.16.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Recently a microbial growth model, the new logistic model, which could precisely describe and predict microbial growth at various patterns of temperature, was developed by the author (Biocontrol Science, 15, 75-80, 2010). The author shows several software programs developed with the model in this review. First, a program that analyzes microbial growth data and generates growth curves fitted to the model was developed. Second, a growth prediction program for Escherichia coli, Staphylococcus aureus, and Vibrio paraheamolyticus [corrected] exposed at various patterns of temperature was made based on experimental data. For V. paraheamolyticus [corrected] a program for bacterial growth under environmental conditions including temperature, salt concentration, and pH was developed. These programs are available free at the Japan Food Industry Center. Furthermore, a method to estimate the temperature at various points on or inside a food exposed to a given temperature was developed by using the measured temperatures of two points on the surface of the food and the heat conduction law. Combining this method with the growth model, a system that predicts microbial growth in a food exposed to various temperature patterns was made. This system could be a prototype of an alert system for microbial food safety.
Collapse
Affiliation(s)
- Hiroshi Fujikawa
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.
| |
Collapse
|