1
|
Zheng D, Guan W, Chen J, Zeng C, Tan S, Chen J, Ma D. Sucrose Stearates Stabilized Oil-in-Water Emulsions: Gastrointestinal Fate, Cell Cytotoxicity and Proinflammatory Effects after Simulated Gastrointestinal Digestion. Foods 2024; 13:175. [PMID: 38201202 PMCID: PMC10778613 DOI: 10.3390/foods13010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Different structural composition ratios of sucrose stearates with hydrophilic-hydrophobic balance (HLB) values ranging from 1 to 16 on lipolysis in emulsion were investigated using a simulated gastrointestinal tract (GIT). Results showed a direct correlation between the HLB values of sucrose stearates and the lipolysis rate of emulsions, and a lower HLB value led to diminished lipolysis in the GIT simulation model. Mechanism study indicated that poor emulsifying capacity of sucrose stearates and lipolysis of sucrose stearates with lower HLB value inhibited the digestive behavior of oil. In addition, monoester was mainly hydrolyzed in the gastric phase, whereas sucrose polyesters caused lipolysis in the intestinal phase using an in vitro digestive model and HPLC analysis, further suppressing lipid digestion. Furthermore, a decrease in cell cytotoxicity and proinflammatory effects on Caco-2 and Raw264.7 were observed post-digestion, respectively. This work offers important insights into the effects of the degree of esterification of sucrose stearate on lipid digestion behavior in oil-in-water emulsions.
Collapse
Affiliation(s)
- Danhong Zheng
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Weiyan Guan
- College of Packaging Engineering, Jinan University, Zhuhai 519070, China
| | - Jiaqing Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Cuicui Zeng
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shen Tan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jing Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Da Ma
- College of Packaging Engineering, Jinan University, Zhuhai 519070, China
| |
Collapse
|
2
|
Yardimci BK, Sahin SC, Sever NI, Ozek NS. Biochemical effects of sodium benzoate, potassium sorbate and sodium nitrite on food spoilage yeast Saccharomyces cerevisiae. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00964-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Zhao F, Wang W, Zhang G, Zhang J, Liu C, Xu B. In vitro Antibacterial Effect of Polyglycerol Monolaurates against Gram-Bacteria and Understanding the Underlying Mechanism. J Oleo Sci 2021; 70:571-580. [PMID: 33692238 DOI: 10.5650/jos.ess20274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polyglycerol monolaurates are generally recognized as safe food additives and are commonly used as food emulsifiers. In this study, the antimicrobial effect of four polyglycerol monolaurates on two Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two Gram-negative bacteria (Escherichia. coli and Pseudomonas aeruginosa) were investigated. The minimum inhibitory concentration (MIC) of diglycerol monolaurate (PG2ML), triglycerol monolaurate (PG3ML), hexaglycerol monolaurate (PG6ML), and decaglycerol monolaurate (PG10ML) against S. aureus was 0.16, 0.32, 0.63, and 1.25 mg/mL, respectively. The MIC of PG2ML, PG3ML, PG6ML, and PG10ML against B. subtilis was 0.32, 0.63, 1.25, and 3.75 mg/mL, respectively. No apparent antimicrobial effect of these four polyglycerol monolaurates on E. coli and P. aeruginosa was observed even up to 10.00 mg/mL. The underlying mechanism was investigated by assessing cell membrane permeability, the integrity of cell membrane, and morphology. We concluded that polyglycerol monolaurates might eliminate Gram-positive bacteria by disrupting the cell membrane, thereby increasing cell membrane permeability, releasing the cellular contents, and altering the cell morphology.
Collapse
Affiliation(s)
- Feifei Zhao
- School of Light Industry, Beijing Technology and Business University
| | - Wenyue Wang
- School of Light Industry, Beijing Technology and Business University.,China Rural Technology Development Center
| | - Guiju Zhang
- School of Light Industry, Beijing Technology and Business University
| | - Jieying Zhang
- School of Light Industry, Beijing Technology and Business University
| | - Changyao Liu
- School of Light Industry, Beijing Technology and Business University
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University
| |
Collapse
|
4
|
Plata E, Ruiz M, Ruiz J, Ortiz C, Castillo JJ, Fernández-Lafuente R. Chemoenzymatic Synthesis of the New 3-((2,3-Diacetoxypropanoyl)oxy)propane-1,2-diyl Diacetate Using Immobilized Lipase B from Candida antarctica and Pyridinium Chlorochromate as an Oxidizing Agent. Int J Mol Sci 2020; 21:ijms21186501. [PMID: 32899537 PMCID: PMC7555366 DOI: 10.3390/ijms21186501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/18/2023] Open
Abstract
To exploit the hydrolytic activity and high selectivity of immobilized lipase B from Candida antarctica on octyl agarose (CALB-OC) in the hydrolysis of triacetin and also to produce new value-added compounds from glycerol, this work describes a chemoenzymatic methodology for the synthesis of the new dimeric glycerol ester 3-((2,3-diacetoxypropanoyl)oxy)propane-1,2-diyl diacetate. According to this approach, triacetin was regioselectively hydrolyzed to 1,2-diacetin with CALB-OC. The diglyceride product was subsequently oxidized with pyridinium chlorochromate (PCC) and a dimeric ester was isolated as the only product. It was found that the medium acidity during the PCC treatment and a high 1,2-diacetin concentration favored the formation of the ester. The synthesized compounds were characterized using IR, MS, HR-MS, and NMR techniques. The obtained dimeric ester was evaluated at 100 ppm against seven bacterial strains and two Candida species to identify its antimicrobial activity. The compound has no inhibitory activity against the bacterial strains used but decreased C. albicans and C. parapsilosis growth by 49% and 68%, respectively. Hemolytic activity was evaluated, and the results obtained support the use of the dimeric ester to control C. albicans and C. parapsilosis growth in non-intravenous applications because the compound shows hemolytic activity.
Collapse
Affiliation(s)
- Esteban Plata
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, CEP, 680001 Bucaramanga, Colombia; (E.P.); (M.R.); (J.R.)
| | - Mónica Ruiz
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, CEP, 680001 Bucaramanga, Colombia; (E.P.); (M.R.); (J.R.)
| | - Jennifer Ruiz
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, CEP, 680001 Bucaramanga, Colombia; (E.P.); (M.R.); (J.R.)
| | - Claudia Ortiz
- Escuela de Microbiología, Universidad Industrial de Santander, 680001 Bucaramanga, Colombia;
| | - John J. Castillo
- Escuela de Química, Grupo de investigación en Bioquímica y Microbiología (GIBIM), Edificio Camilo Torres 210, Universidad Industrial de Santander, CEP, 680001 Bucaramanga, Colombia; (E.P.); (M.R.); (J.R.)
- Correspondence: (J.J.C.); (R.F.-L.); Tel.:+57-320-902-6464 (J.J.C.); +34915854804 (R.F.-L.)
| | - Roberto Fernández-Lafuente
- ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
- Correspondence: (J.J.C.); (R.F.-L.); Tel.:+57-320-902-6464 (J.J.C.); +34915854804 (R.F.-L.)
| |
Collapse
|
5
|
Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J. Inhibition of Cronobacter sakazakii in reconstituted infant formula using triglycerol monolaurate and its effect on the sensory properties of infant formula. Int J Food Microbiol 2020; 320:108518. [DOI: 10.1016/j.ijfoodmicro.2020.108518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 11/24/2022]
|
6
|
Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J. Antifungal Effect of Triglycerol Monolaurate Synthesized by Lipozyme 435-Mediated Esterification. J Microbiol Biotechnol 2020; 30:561-570. [PMID: 31986567 PMCID: PMC9728257 DOI: 10.4014/jmb.1910.10043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study was designed to synthesize triglycerol monolaurate (TGML) with Lipozyme 435 as the catalyst, and explore its effects on the growth of Aspergillus parasiticus (A. parasiticus) and Aspergillus flavus (A. flavus) and the secretion of aflatoxin b1. The highest content of TGML (49.76%) was obtained at a molar ratio of triglycerol to lauric acid of 1.08, a reaction temperature of 84.93°C, a reaction time of 6 h and an enzyme dosage of 1.32%. After purification by molecular distillation combined with the washes with ethyl acetate and water, the purity of TGML reached 98.3%. Through characterization by electrospray-ionization mass spectrometry, infrared spectrum and nuclear magnetic resonance, the structure of TGML was identified as a linear triglycerol combined with lauroyl at the end. Finally, the inhibitory effects of TGML on the growths of A. parasiticus and A. flavus and the secretion of aflatoxin b1 were evaluated by measuring the colony diameter, the inhibition rate of mycelial growth and the content of mycotoxin in the media. The results indicated that TGML had a stronger inhibitory effects on colony growth and mycelial development of both toxic molds compared to sodium benzoate and potassium sorbate, and the secretions of toxins from A. parasiticus and A. flavus were completely suppressed when adding TGML at 10 and 5 mM, respectively. Based on the above results, TGML may be used as a substitute for traditional antifungal agents in the food industry.
Collapse
Affiliation(s)
- Song Zhang
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China
| | - Jian Xiong
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China
| | - Wenyong Lou
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China
| | - Zhengxiang Ning
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China
| | - Denghui Zhang
- Innovation Center of Bioactive Molecule Development and Application, South China Institute of Collaborative Innovation, Xuefu Road, Dongguan 221116, P.R. China
| | - Jiguo Yang
- School of Food Science and Engineering, South China University of Technology, 381Wushan Road, Guangzhou 510641, P.R. China,Corresponding author Phone: +86-13560396620 Fax: +86-0769-38822110 E-mail:
| |
Collapse
|
7
|
Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J. Antimicrobial activity and action mechanism of triglycerol monolaurate on common foodborne pathogens. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ikegawa C, Ogita A, Doi T, Kumazawa F, Fujita KI, Tanaka T. Involvement of Irreversible Vacuolar Membrane Fragmentation in the Lethality of Food Emulsifier Diglycerol Monolaurate against Budding Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5650-5656. [PMID: 28671839 DOI: 10.1021/acs.jafc.7b01580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Diglycerol monolaurate (DGL) has been manufactured as a novel type of food emulsifier and is being considered for further application as a food preservative. DGL lethality was thus examined against Saccharomyces cerevisiae as a model of a yeast that causes food spoilage. In spite of its molecular structure as a nonionic surfactant, DGL could exhibit lethality at a concentration lower than that which caused disruptive damage to the yeast plasma membrane. DGL lethality was rather accompanied by a dynamic intracellular event such as a marked vacuolar membrane fragmentation. In DGL-treated cells, the tiny dots or particles of fragmented vacuolar membranes failed to fuse into the original large rounded architecture after its removal from medium, which were distinguished from those generated as a result of vacuolar fission normally accelerated under hyperosmotic conditions. Such an irreversible structural damage of the organelle membrane was considered a cause of DGL lethality.
Collapse
Affiliation(s)
| | | | - Takeshi Doi
- Taiyo Kagaku Co., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | | | | | | |
Collapse
|