1
|
van Weperen V, Hoang JD, Jani N, Atmani K, Chan CA, Cao K, Avasthi S, Lokhandwala ZA, Emamimeybodi M, Vaseghi M. Sympathetic nociceptive afferent signaling drives the chronic structural and functional autonomic remodeling after myocardial infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645120. [PMID: 40196476 PMCID: PMC11974784 DOI: 10.1101/2025.03.28.645120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
After myocardial infarction (MI), pathological autonomic remodeling, including vagal dysfunction and sympathoexcitation, occurs and predisposes to ventricular arrhythmias (VT/VF). The underlying factors that drive this remodeling, including the observed neuroinflammation and glial activation, remain unknown. We hypothesized that sympathetic nociceptive afferents underlie this remodeling post-MI. Epidural resiniferatoxin (RTX, to ablate sympathetic cardiac afferent neurons) vs. saline was administered in pigs prior to MI and autonomic and electrophysiological effects assessed four to six weeks post-infarction. Acute effects of afferent ablation after chronic MI were also assessed in a separate group of animals. Baroreflex sensitivity and vagal tone, as measured by parasympathetic neuronal activity and cardiac nociceptive responses, were improved in infarcted animals which received epidural RTX prior to MI. These animals also demonstrated reduced spinal cord inflammation and glial activation, downregulation of circulating stress and inflammatory pathways, and stabilization of electrophysiological parameters, with reduced VT/VF-inducibility. Epidural RTX after chronic MI also acutely restored vagal function and decreased VT/VF. These data suggest that cardiac spinal nociceptive afferents directly contribute to VT/VF susceptibility and MI-induced autonomic remodeling, including oxidative stress, inflammation, glial activation, and reduced vagal function, providing novel insights into the causal role of these afferents in driving sympathovagal imbalance after MI.
Collapse
|
2
|
Hoang JD, van Weperen VYH, Kang KW, Jani NR, Swid MA, Chan CA, Lokhandwala ZA, Lux RL, Vaseghi M. Antiarrhythmic Mechanisms of Epidural Blockade After Myocardial Infarction. Circ Res 2024; 135:e57-e75. [PMID: 38939925 PMCID: PMC11257785 DOI: 10.1161/circresaha.123.324058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Thoracic epidural anesthesia (TEA) has been shown to reduce the burden of ventricular tachycardia in small case series of patients with refractory ventricular tachyarrhythmias and cardiomyopathy. However, its electrophysiological and autonomic effects in diseased hearts remain unclear, and its use after myocardial infarction is limited by concerns for potential right ventricular dysfunction. METHODS Myocardial infarction was created in Yorkshire pigs (N=22) by left anterior descending coronary artery occlusion. Approximately, six weeks after myocardial infarction, an epidural catheter was placed at the C7-T1 vertebral level for injection of 2% lidocaine. Right and left ventricular hemodynamics were recorded using Millar pressure-conductance catheters, and ventricular activation recovery intervals (ARIs), a surrogate of action potential durations, by a 56-electrode sock and 64-electrode basket catheter. Hemodynamics and ARIs, baroreflex sensitivity and intrinsic cardiac neural activity, and ventricular effective refractory periods and slope of restitution (Smax) were assessed before and after TEA. Ventricular tachyarrhythmia inducibility was assessed by programmed electrical stimulation. RESULTS TEA reduced inducibility of ventricular tachyarrhythmias by 70%. TEA did not affect right ventricular-systolic pressure or contractility, although left ventricular-systolic pressure and contractility decreased modestly. Global and regional ventricular ARIs increased, including in scar and border zone regions post-TEA. TEA reduced ARI dispersion specifically in border zone regions. Ventricular effective refractory periods prolonged significantly at critical sites of arrhythmogenesis, and Smax was reduced. Interestingly, TEA significantly improved cardiac vagal function, as measured by both baroreflex sensitivity and intrinsic cardiac neural activity. CONCLUSIONS TEA does not compromise right ventricular function in infarcted hearts. Its antiarrhythmic mechanisms are mediated by increases in ventricular effective refractory period and ARIs, decreases in Smax, and reductions in border zone electrophysiological heterogeneities. TEA improves parasympathetic function, which may independently underlie some of its observed antiarrhythmic mechanisms. This study provides novel insights into the antiarrhythmic mechanisms of TEA while highlighting its applicability to the clinical setting.
Collapse
Affiliation(s)
- Jonathan D Hoang
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
- UCLA Molecular Cellular and Integrative Physiology Interdepartmental Program, Los Angeles, CA
| | - Valerie YH van Weperen
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
| | - Ki-Woon Kang
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
| | - Neil R Jani
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
| | - Mohammed A Swid
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
| | - Christopher A Chan
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
| | - Zulfiqar Ali Lokhandwala
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
| | - Robert L Lux
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Marmar Vaseghi
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, Los Angeles, CA
- Neurocardiology Research Center of Excellence, UCLA, Los Angeles, CA
- UCLA Molecular Cellular and Integrative Physiology Interdepartmental Program, Los Angeles, CA
| |
Collapse
|
3
|
Dusi V, Angelini F, Baldi E, Toscano A, Gravinese C, Frea S, Compagnoni S, Morena A, Saglietto A, Balzani E, Giunta M, Costamagna A, Rinaldi M, Trompeo AC, Rordorf R, Anselmino M, Savastano S, De Ferrari GM. Continuous stellate ganglion block for ventricular arrhythmias: case series, systematic review, and differences from thoracic epidural anaesthesia. Europace 2024; 26:euae074. [PMID: 38531027 PMCID: PMC11020261 DOI: 10.1093/europace/euae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
AIMS Percutaneous stellate ganglion block (PSGB) through single-bolus injection and thoracic epidural anaesthesia (TEA) have been proposed for the acute management of refractory ventricular arrhythmias (VAs). However, data on continuous PSGB (C-PSGB) are scant. The aim of this study is to report our dual-centre experience with C-PSGB and to perform a systematic review on C-PSGB and TEA. METHODS AND RESULTS Consecutive patients receiving C-PSGB at two centres were enrolled. The systematic literature review follows the latest Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Our case series (26 patients, 88% male, 60 ± 16 years, all with advanced structural heart disease, left ventricular ejection fraction 23 ± 11%, 32 C-PSGBs performed, with a median duration of 3 days) shows that C-PSGB is feasible and safe and leads to complete VAs suppression in 59% and to overall clinical benefit in 94% of cases. Overall, 61 patients received 68 C-PSGBs and 22 TEA, with complete VA suppression in 63% of C-PSGBs (61% of patients). Most TEA procedures (55%) were performed on intubated patients, as opposed to 28% of C-PSGBs (P = 0.02); 63% of cases were on full anticoagulation at C-PSGB, none at TEA (P < 0.001). Ropivacaine and lidocaine were the most used drugs for C-PSGB, and the available data support a starting dose of 12 and 100 mg/h, respectively. No major complications occurred, yet TEA discontinuation rate due to side effects was higher than C-PSGB (18 vs. 1%, P = 0.01). CONCLUSION Continuous PSGB seems feasible, safe, and effective for the acute management of refractory VAs. The antiarrhythmic effect may be accomplished with less concerns for concomitant anticoagulation compared with TEA and with a lower side-effect related discontinuation rate.
Collapse
Affiliation(s)
- Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Corso Bramante 88/90, 10126 Torino, Italy
| | - Filippo Angelini
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Corso Bramante 88/90, 10126 Torino, Italy
| | - Enrico Baldi
- Arrhythmia and Electrophysiology Unit, Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio Toscano
- Department of Anaesthesia, Critical Care and Emergency, ‘Città della Salute e della Scienza’ Hospital, Torino, Italy
| | - Carol Gravinese
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Corso Bramante 88/90, 10126 Torino, Italy
| | - Simone Frea
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Corso Bramante 88/90, 10126 Torino, Italy
| | - Sara Compagnoni
- Department of Molecular Medicine, Section of Cardiology, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Arianna Morena
- Cardiology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Corso Bramante 88/90, 10126 Torino, Italy
| | - Andrea Saglietto
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Corso Bramante 88/90, 10126 Torino, Italy
| | - Eleonora Balzani
- Department of Surgical Sciences, University of Turin, Torino, Italy
| | - Matteo Giunta
- Department of Anaesthesia, Critical Care and Emergency, ‘Città della Salute e della Scienza’ Hospital, Torino, Italy
| | - Andrea Costamagna
- Department of Anaesthesia, Critical Care and Emergency, ‘Città della Salute e della Scienza’ Hospital, Torino, Italy
| | - Mauro Rinaldi
- Department of Surgical Sciences, University of Turin, Torino, Italy
- Department of Cardiovascular and Thoracic Surgery, ‘Città della Salute e della Scienza’ Hospital, Torino, Italy
| | - Anna Chiara Trompeo
- Department of Anaesthesia, Critical Care and Emergency, ‘Città della Salute e della Scienza’ Hospital, Torino, Italy
| | - Roberto Rordorf
- Arrhythmia and Electrophysiology Unit, Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matteo Anselmino
- Cardiology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Corso Bramante 88/90, 10126 Torino, Italy
| | - Simone Savastano
- Arrhythmia and Electrophysiology Unit, Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, ‘Città della Salute e della Scienza’ Hospital, Corso Bramante 88/90, 10126 Torino, Italy
| |
Collapse
|
4
|
Hoang JD, van Weperen VY, Kang KW, Jani NR, Swid MA, Chan CA, Lokhandwala ZA, Lux RL, Vaseghi M. Thoracic epidural blockade after myocardial infarction benefits from anti-arrhythmic pathways mediated in part by parasympathetic modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585127. [PMID: 38559001 PMCID: PMC10980055 DOI: 10.1101/2024.03.14.585127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Thoracic epidural anesthesia (TEA) has been shown to reduce the burden of ventricular tachyarrhythmias (VT) in small case-series of patients with refractory VT and cardiomyopathy. However, its electrophysiological and autonomic effects in diseased hearts remain unclear and its use after myocardial infarction (MI) is limited by concerns for potential RV dysfunction. Methods MI was created in Yorkshire pigs ( N =22) by LAD occlusion. Six weeks post-MI, an epidural catheter was placed at the C7-T1 vertebral level for injection of 2% lidocaine. RV and LV hemodynamics were recorded using Millar pressure-conductance catheters, and ventricular activation-recovery intervals (ARIs), a surrogate of action potential durations, by a 56-electrode sock and 64-electrode basket catheter. Hemodynamics and ARIs, baroreflex sensitivity (BRS) and intrinsic cardiac neural activity, and ventricular effective refractory periods (ERP) and slope of restitution (S max ) were assessed before and after TEA. VT/VF inducibility was assessed by programmed electrical stimulation. Results TEA reduced inducibility of VT/VF by 70%. TEA did not affect RV-systolic pressure or contractility, although LV-systolic pressure and contractility decreased modestly. Global and regional ventricular ARIs increased, including in scar and border zone regions post-TEA. TEA reduced ARI dispersion specifically in border zone regions. Ventricular ERPs prolonged significantly at critical sites of arrhythmogenesis, and S max was reduced. Interestingly, TEA significantly improved cardiac vagal function, as measured by both BRS and intrinsic cardiac neural activity. Conclusion TEA does not compromise RV function in infarcted hearts. Its anti-arrhythmic mechanisms are mediated by increases in ventricular ERP and ARIs, decreases in S max , and reductions in border zone heterogeneity. TEA improves parasympathetic function, which may independently underlie some of its observed anti-arrhythmic mechanisms. This study provides novel insights into the anti-arrhythmic mechanisms of TEA, while highlighting its applicability to the clinical setting. Abstract Illustration Myocardial infarction is known to cause cardiac autonomic dysfunction characterized by sympathoexcitation coupled with reduced vagal tone. This pathological remodeling collectively predisposes to ventricular arrhythmia. Thoracic epidural anesthesia not only blocks central efferent sympathetic outflow, but by also blocking ascending projections of sympathetic afferents, relieving central inhibition of vagal function. These complementary autonomic effects of thoracic epidural anesthesia may thus restore autonomic balance, thereby improving ventricular electrical stability and suppressing arrhythmogenesis. DRG=dorsal root ganglion, SG=stellate ganglion.
Collapse
|