1
|
Lin HC, Chang SF, Su CL, Hu HC, Chiao DJ, Hsu YL, Lu HY, Lin CC, Shu PY, Kuo SC. Facile quantitative diagnostic testing for neutralizing antibodies against Chikungunya virus. BMC Infect Dis 2024; 24:1076. [PMID: 39350079 PMCID: PMC11440707 DOI: 10.1186/s12879-024-09973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Viral neutralization (NT) assays can be used to determine the immune status of patients or assess the potency of candidate vaccines or therapeutic monoclonal antibodies (mAbs). Focus reduction neutralization test (FRNT) is a conventional neutralization test (cVNT) with superior specificity for measurement of neutralizing antibodies against a specific virus. Unfortunately, the application of FRNT to the chikungunya virus (CHIKV) involves a highly pathogenic bio-agent requiring biosafety level 3 (BSL3) facilities, which inevitably imposes high costs and limits accessibility. In this study, we evaluated a safe surrogate virus neutralization test (sVNT) that uses novel CHIKV replicon particles (VRPs) expressing eGFP and luciferase (Luc) to enable the rapid detection and quantification of neutralizing activity in clinical human serum samples. METHODS This unmatched case-control validation study used serum samples from laboratory-confirmed cases of CHIKV (n = 19), dengue virus (DENV; n = 9), Japanese encephalitis virus (JEV; n = 5), and normal individuals (n = 20). We evaluated the effectiveness of sVNT, based on mosquito cell-derived CHIK VRPs (mos-CHIK VRPs), in detecting (eGFP) and quantifying (Luc) neutralizing activity, considering specificity, sensitivity, and reproducibility. We conducted correlation analysis between the proposed rapid method (20 h) versus FRNT assay (72 h). We also investigated the correlation between sVNT and FRNT in NT titrations in terms of Pearson's correlation coefficient (r) and sigmoidal curve fitting. RESULTS In NT screening assays, sVNT-eGFP screening achieved sensitivity and specificity of 100%. In quantitative neutralization assays, we observed a Pearson's correlation coefficient of 0.83 for NT50 values between sVNT-Luc and FRNT. CONCLUSIONS Facile VRP-based sVNT within 24 h proved highly reliable in the identification and quantification of neutralizing activity against CHIKV in clinical serum samples.
Collapse
Affiliation(s)
- Hui-Chung Lin
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Shu-Fen Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 11561, Taiwan
| | - Chien-Ling Su
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 11561, Taiwan
| | - Huai-Chin Hu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 11561, Taiwan
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
| | - Yu-Lin Hsu
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
| | - Hsuan-Ying Lu
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, 11561, Taiwan.
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, 237010 No. 172, Dapu Rd., Sanxia Dist, Taipei, 11490, Taiwan.
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
2
|
Awal SK, Swu AK. Beyond the Bite: Detailed findings on Chikungunya and Dengue co-detection in Punjab, North India - clinical insights and diagnostic challenges. Braz J Microbiol 2024:10.1007/s42770-024-01493-w. [PMID: 39222222 DOI: 10.1007/s42770-024-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES The co-circulation of Chikungunya virus (CHIKV) and Dengue virus (DENV) in India poses a challenge for the diagnosing clinician, as they share similar clinical signs and symptoms and geographical distribution. Both arthropod-borne viruses are maintained in the environment by the Aedes mosquito, commonly found in tropical countries including India. Here we aim to investigate the clinical and laboratory aspects of Chikungunya/Dengue suspected cases in Punjab, India during 2021-2022, focusing on the differential diagnosis of Dengue. METHODS All suspected cases were submitted to serological differential diagnosis approaches to arboviruses like Chikungunya and Dengue. For the detection of Chikungunya Infection, CHIK IgM Capture ELISA was employed. Whereas, for Dengue NS1 antigen ELISA and IgM Capture ELISA assays were employed. RESULTS A total of 370 cases suspected of arboviral infection were investigated and 38.3% (142/370) were confirmed as Chikungunya. Chikungunya cases were slightly more prevalent in males (54%) and the most frequently affected age group was adults between 16 and 30 years old (45.7%). Polyarthralgia affected 79.5% of patients, 63.3% exhibited headache and 50% presented with retro-orbital pain. 28.9% (107/370) had serological evidence of DENV exposure by detection of specific anti-DENV IgM or NS1 and 9.1% (34/370) cases of co-detection of Chikungunya and Dengue were reported. Urban populations had a higher infection rate of co-detection of Chikungunya and Dengue than rural populations with 83% versus 17%, respectively. CONCLUSIONS Despite an initial clinical diagnosis of Dengue, most patients with fever and arthralgia were serologically confirmed as Chikungunya cases, with a notable prevalence of CHIKV/DENV co-detection. Strengthening differential diagnosis of circulating arboviruses is crucial for improving patient care and enhancing vector control and environmental management strategies.
Collapse
Affiliation(s)
- Sampreet Kaur Awal
- Department of Microbiology, Manipal Tata Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - Anato K Swu
- Consultant Microbiologist & Head of Laboratory Services Putuonuo Hospital, Kohima, Nagaland, India
| |
Collapse
|
3
|
Kizu J, Graham M, Liu W. Potential Serological Misdiagnosis of Barmah Forest Virus and Ross River Virus Diseases as Chikungunya Virus Infections in Australia: Comparison of ELISA with Neutralization Assay Results. Viruses 2024; 16:384. [PMID: 38543750 PMCID: PMC10974935 DOI: 10.3390/v16030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 05/23/2024] Open
Abstract
To evaluate the frequency of errors in the diagnosis of medical laboratory-diagnosed Chikungunya virus (CHIKV) infections in Australia, we studied 42 laboratory-diagnosed CHIKV serum samples from one Queensland medical laboratory by ELISA IgG/IgM and measured the specific neutralization antibodies (Nab) against Barmah Forest virus (BFV), CHIKV and Ross River virus (RRV). The sero-positivity rates for the sera were as follows: anti-BFV IgG+ 19% (8/42), IgM+ 2.4% (1/42) and Nab+ 16.7% (7/42); anti-CHIKV IgG+ 90.5% (38/42), IgM+ 21.4% (9/42) and Nab+ 90.5% (38/42); anti-RRV IgG+ 88.1% (37/42), IgM+ 28.6% (12/42) and Nab+ 83.2% (35/42), respectively. Among the samples with multiple antibody positivity, 2.4% (1/42) showed triple ELISA IgM+, and 14.3% (6/42) exhibited double IgM RRV+CHIKV+; 9.5% (4/42) showed triple IgG+, 76.2% (32/42) displayed double IgG RRV+CHIKV+, 4.8% (2/42) showed IgG BFV+RRV+ and 4.8% (2/42) showed IgG BFV++CHIKV+; and 9.5% (4/42) showed triple Nab+ and 69% (29/42) exhibited double Nab RRV+CHIKV+, respectively. Our analysis of the single-virus infection control Nab results suggested no cross-neutralization between RRV and BFV, and only mild cross-neutralization between CHIKV and RRV, BFV and CHIKV, all with a ≥4-fold Nab titre ratio difference between the true virus infection and cross-reactivity counterpart virus. Subsequently, we re-diagnosed these 42 patients as 1 BFV+, 8 CHIKV+ and 23 RRV+ single-virus infections, along with five RRV+/BFV+ and four RRV+/CHIKV+ double infections, and one possible RRV+/BFV+ or RRV+CHIKV+, respectively. These findings suggests that a substantial proportion of medically attended RRV and BFV infections were misdiagnosed as CHIKV infections, highlighting the imperative need for diagnostic laboratory tests capable of distinguishing between CHIKV infections and actively co-circulating RRV and BFV. For a correct diagnosis, it is crucial to consider reliable diagnostic methods such as the neutralization assay to exclude RRV and BFV.
Collapse
Affiliation(s)
- Joanne Kizu
- Australian Defence Force Malaria and Infectious Disease Institute, Weary Dunlop Drive, Gallipoli Barracks, Enoggera, QLD 4051, Australia; (J.K.); (M.G.)
| | - Melissa Graham
- Australian Defence Force Malaria and Infectious Disease Institute, Weary Dunlop Drive, Gallipoli Barracks, Enoggera, QLD 4051, Australia; (J.K.); (M.G.)
- Queensland Institute of Medical Research-Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Wenjun Liu
- Australian Defence Force Malaria and Infectious Disease Institute, Weary Dunlop Drive, Gallipoli Barracks, Enoggera, QLD 4051, Australia; (J.K.); (M.G.)
| |
Collapse
|
4
|
Global prevalence of dengue and chikungunya coinfection: A systematic review and meta-analysis of 43,341 participants. Acta Trop 2022; 231:106408. [PMID: 35305942 DOI: 10.1016/j.actatropica.2022.106408] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/05/2022] [Accepted: 03/12/2022] [Indexed: 11/20/2022]
Abstract
Dengue and chikungunya virus are important arboviruses of public health concern. In the past decades, they have accounted for numerous outbreaks of dengue and chikungunya in different parts of the world. Several cases of concurrent infection of dengue and chikungunya have been documented. However, the true burden of this concurrent infection is unknown. Here, a systematic review and meta-analysis of published data on the prevalence of dengue and chikungunya coinfection in the human population was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis. Six electronic databases (Web of science, Embase, PubMed, ScienceDirect, Scopus, and Google Scholar) were searched without year or language restrictions for relevant studies. The study protocol was registered with PROSPERO (CRD42020175344). Eighty-three studies involving a total of 43,341 participants were included. The random-effects model was employed to calculate the summary estimates. A pooled global prevalence of 2.5% (95% CI: 1.8-3.4) was obtained for dengue and chikungunya coinfection. Males and females appear to be coinfected at a fairly similar rate. Among the regions, Asia accounted for the highest prevalence (3.3%, 95% CI: 2.3-4.6) while North America was the least (0.8%, 95% CI: 0.3-2.4). The prevalence estimates varied across different countries. A much higher prevalence rates were obtained for Colombia (37.4%, 95% CI: 9.1-78.1), Madagascar (18.2%, 95% CI: 10.1-30.6), Laos (12.5%, 95% CI: 5.3-26.7), Maldives (4.5%, 95% CI: 1.5-13.0) and Thailand (3.7%, 95% CI: 0.4-26.3). This first extensive systematic review and meta-analysis reveals dengue and chikungunya coinfection as a global problem worthy of consideration. It is therefore pertinent that both infections be assessed during diagnosis, mosquito vector control practices be implemented, and vaccine development strides be supported globally.
Collapse
|
5
|
Chikungunya Manifestations and Viremia in Patients WhoPresented to the Fever Clinic at Bangkok Hospital for Tropical Diseases during the 2019 Outbreak in Thailand. Trop Med Infect Dis 2021; 6:tropicalmed6010012. [PMID: 33494514 PMCID: PMC7924391 DOI: 10.3390/tropicalmed6010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Chikungunya virus is an Alphavirus belonging to the family Togaviridae that is transmitted to humans by an infected Aedes mosquito. Patients develop fever, inflammatory arthritis, and rash during the acute stage of infection. Although the illness is self-limiting, atypical and severe cases are not uncommon, and 60% may develop chronic symptoms that persist for months or even for longer durations. Having a distinct periodical epidemiologic outbreak pattern, chikungunya virus reappeared in Thailand in December 2018. Here, we describe a cohort of acute chikungunya patients who had presented to the Bangkok Hospital for Tropical Diseases during October 2019. Infection was detected by a novel antigen kit and subsequently confirmed by real-time RT-PCR using serum collected at presentation to the Fever Clinic. Other possible acute febrile illnesses such as influenza, dengue, and malaria were excluded. We explored the sequence of clinical manifestations at presentation during the acute phase and associated the viral load with the clinical findings. Most of the patients were healthy individuals in their forties. Fever and arthralgia were the predominant clinical manifestations found in this patient cohort, with a small proportion of patients with systemic symptoms. Higher viral loads were associated with arthralgia, and arthralgia with the involvement of the large joints was more common in female patients.
Collapse
|
6
|
Alvarado LI, Lorenzi OD, Torres-Velásquez BC, Sharp TM, Vargas L, Muñoz-Jordán JL, Hunsperger EA, Pérez-Padilla J, Rivera A, González-Zeno GE, Galloway RL, Glass Elrod M, Mathis DL, Oberste MS, Nix WA, Henderson E, McQuiston J, Singleton J, Kato C, García-Gubern C, Santiago-Rivera W, Muns-Sosa R, Ortiz-Rivera JD, Jiménez G, Rivera-Amill V, Andújar-Pérez DA, Horiuchi K, Tomashek KM. Distinguishing patients with laboratory-confirmed chikungunya from dengue and other acute febrile illnesses, Puerto Rico, 2012-2015. PLoS Negl Trop Dis 2019; 13:e0007562. [PMID: 31329598 PMCID: PMC6645456 DOI: 10.1371/journal.pntd.0007562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/19/2019] [Indexed: 11/18/2022] Open
Abstract
Chikungunya, a mosquito-borne viral, acute febrile illness (AFI) is associated with polyarthralgia and polyarthritis. Differentiation from other AFI is difficult due to the non-specific presentation and limited availability of diagnostics. This 3-year study identified independent clinical predictors by day post-illness onset (DPO) at presentation and age-group that distinguish chikungunya cases from two groups: other AFI and dengue. Specimens collected from participants with fever ≤7 days were tested for chikungunya, dengue viruses 1-4, and 20 other pathogens. Of 8,996 participants, 18.2% had chikungunya, and 10.8% had dengue. Chikungunya cases were more likely than other groups to be older, report a chronic condition, and present <3 DPO. Regardless of timing of presentation, significant positive predictors for chikungunya versus other AFI were: joint pain, muscle, bone or back pain, skin rash, and red conjunctiva; with dengue as the comparator, red swollen joints (arthritis), joint pain, skin rash, any bleeding, and irritability were predictors. Chikungunya cases were less likely than AFI and dengue to present with thrombocytopenia, signs of poor circulation, diarrhea, headache, and cough. Among participants presenting <3 DPO, predictors for chikungunya versus other AFI included: joint pain, skin rash, and muscle, bone or back pain, and absence of thrombocytopenia, poor circulation and respiratory or gastrointestinal symptoms; when the comparator was dengue, joint pain and arthritis, and absence of thrombocytopenia, leukopenia, and nausea were early predictors. Among all groups presenting 3-5 DPO, pruritic skin became a predictor for chikungunya, joint, muscle, bone or back pain were no longer predictive, while arthritis became predictive in all age-groups. Absence of thrombocytopenia was a significant predictor regardless of DPO or comparison group. This study identified robust clinical indicators such as joint pain, skin rash and absence of thrombocytopenia that can allow early identification of and accurate differentiation between patients with chikungunya and other common causes of AFI.
Collapse
Affiliation(s)
- Luisa I. Alvarado
- Ponce Health Sciences University /Ponce Research Institute, Saint Luke's Episcopal Hospital, Ponce, Puerto Rico, United States of America
| | - Olga D. Lorenzi
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention (CDC), San Juan, Puerto Rico, United States of America
| | - Brenda C. Torres-Velásquez
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention (CDC), San Juan, Puerto Rico, United States of America
| | - Tyler M. Sharp
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention (CDC), San Juan, Puerto Rico, United States of America
| | - Luzeida Vargas
- Ponce Health Sciences University /Ponce Research Institute, Saint Luke's Episcopal Hospital, Ponce, Puerto Rico, United States of America
| | - Jorge L. Muñoz-Jordán
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention (CDC), San Juan, Puerto Rico, United States of America
| | - Elizabeth A. Hunsperger
- Division of Global Health Protection, Centers for Disease Control and Prevention (CDC), Kenya, Africa
| | - Janice Pérez-Padilla
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention (CDC), San Juan, Puerto Rico, United States of America
| | - Aidsa Rivera
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention (CDC), San Juan, Puerto Rico, United States of America
| | - Gladys E. González-Zeno
- Ponce Health Sciences University /Ponce Research Institute, Saint Luke's Episcopal Hospital, Ponce, Puerto Rico, United States of America
| | - Renee L. Galloway
- Bacterial Special Pathogens Branch, Zoonoses and Select Agent Laboratory, CDC, Atlanta, Georgia, United States of America
| | - Mindy Glass Elrod
- Bacterial Special Pathogens Branch, Zoonoses and Select Agent Laboratory, CDC, Atlanta, Georgia, United States of America
| | - Demetrius L. Mathis
- Bacterial Special Pathogens Branch, Zoonoses and Select Agent Laboratory, CDC, Atlanta, Georgia, United States of America
| | - M. Steven Oberste
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, United States of America
| | - W. Allan Nix
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, United States of America
| | - Elizabeth Henderson
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia, United States of America
| | - Jennifer McQuiston
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, CDC, Atlanta, Georgia, United States of America
| | - Joseph Singleton
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, CDC, Atlanta, Georgia, United States of America
| | - Cecilia Kato
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, CDC, Atlanta, Georgia, United States of America
| | - Carlos García-Gubern
- Ponce Health Sciences University /Ponce Research Institute, Saint Luke's Episcopal Hospital, Ponce, Puerto Rico, United States of America
| | - William Santiago-Rivera
- Ponce Health Sciences University /Ponce Research Institute, Saint Luke's Episcopal Hospital, Ponce, Puerto Rico, United States of America
| | - Robert Muns-Sosa
- Saint Luke’s Episcopal Hospital, Guayama, Puerto Rico, United States of America
| | | | - Gerson Jiménez
- Saint Luke’s Episcopal Hospital, Guayama, Puerto Rico, United States of America
| | - Vanessa Rivera-Amill
- Ponce Health Sciences University /Ponce Research Institute, Saint Luke's Episcopal Hospital, Ponce, Puerto Rico, United States of America
| | - Doris A. Andújar-Pérez
- Ponce Health Sciences University /Ponce Research Institute, Saint Luke's Episcopal Hospital, Ponce, Puerto Rico, United States of America
| | - Kalanthe Horiuchi
- Office of the Director, Division of Vector-Borne Diseases, CDC, Fort Collins, Colorado, United States of America
| | - Kay M. Tomashek
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Clinical characteristics and predictive score of dengue vs. chikungunya virus infections. Med Mal Infect 2019; 49:250-256. [DOI: 10.1016/j.medmal.2018.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/01/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023]
|
8
|
Harapan H, Michie A, Mudatsir M, Nusa R, Yohan B, Wagner AL, Sasmono RT, Imrie A. Chikungunya virus infection in Indonesia: a systematic review and evolutionary analysis. BMC Infect Dis 2019; 19:243. [PMID: 30866835 PMCID: PMC6417237 DOI: 10.1186/s12879-019-3857-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
Background Despite the high number of chikungunya cases in Indonesia in recent years, comprehensive epidemiological data are lacking. The systematic review was undertaken to provide data on incidence, the seroprevalence of anti-Chikungunya virus (CHIKV) IgM and IgG antibodies, mortality, the genotypes of circulating CHIKV and travel-related cases of chikungunya in the country. In addition, a phylogenetic and evolutionary analysis of Indonesian CHIKV was conducted. Methods A systematic review was conducted to identify eligible studies from EMBASE, MEDLINE, PubMed and Web of Science as of October 16th 2017. Studies describing the incidence, seroprevalence of IgM and IgG, mortality, genotypes and travel-associated chikungunya were systematically reviewed. The maximum likelihood phylogenetic and evolutionary rate was estimated using Randomized Axelerated Maximum Likelihood (RAxML), and the Bayesian Markov chain Monte Carlo (MCMC) method identified the Time to Most Recent Common Ancestors (TMRCA) of Indonesian CHIKV. The systematic review was registered in the PROSPERO database (CRD42017078205). Results Chikungunya incidence ranged between 0.16-36.2 cases per 100,000 person-year. Overall, the median seroprevalence of anti-CHIKV IgM antibodies in both outbreak and non-outbreak scenarios was 13.3% (17.7 and 7.3% for outbreak and non-outbreak events, respectively). The median seroprevalence of IgG antibodies in both outbreak and non-outbreak settings was 18.5% (range 0.0–73.1%). There were 130 Indonesian CHIKV sequences available, of which 120 (92.3%) were of the Asian genotype and 10 (7.7%) belonged to the East/Central/South African (ECSA) genotype. The ECSA genotype was first isolated in Indonesia in 2008 and was continually sampled until 2011. All ECSA viruses sampled in Indonesia appear to be closely related to viruses that caused massive outbreaks in Southeast Asia countries during the same period. Massive nationwide chikungunya outbreaks in Indonesia were reported during 2009–2010 with a total of 137,655 cases. Our spatio-temporal, phylogenetic and evolutionary data suggest that these outbreaks were likely associated with the introduction of the ECSA genotype of CHIKV to Indonesia. Conclusions Although no deaths have been recorded, the seroprevalence of anti-CHIKV IgM and IgG in the Indonesian population have been relatively high in recent years following re-emergence in early 2001. There is sufficient evidence to suggest that the introduction of ECSA into Indonesia was likely associated with massive chikungunya outbreaks during 2009–2010. Electronic supplementary material The online version of this article (10.1186/s12879-019-3857-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia. .,School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia.
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| | - Mudatsir Mudatsir
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia. .,Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Jl. T. Tanoeh Abe, Darussalam, Banda Aceh, 23111, Indonesia.
| | - Roy Nusa
- Vector Borne Disease Control, Research and Development Council, Ministry of Health of the Republic of Indonesia, Jakarta, Indonesia
| | | | | | | | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia. .,Pathwest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia.
| |
Collapse
|
9
|
Dengue-like illness surveillance: a two-year longitudinal survey in suburban and rural communities in the Lao People's Democratic Republic and in Thailand. Western Pac Surveill Response J 2019; 10:15-24. [PMID: 31110838 PMCID: PMC6507124 DOI: 10.5365/wpsar.2017.8.4.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective This study aimed to determine the incidences of dengue-like illness (DLI), dengue virus (DENV) infection, and serotypes and to identify socio-demographical and entomological risk factors of DLI in selected suburban and rural communities in the Lao People's Democratic Republic and in Thailand. Methods A two-year longitudinal study was conducted in four villages during the inter-epidemic period between 2011 and 2013. Entomological surveys, semi-structured interviews of household heads and observations were conducted. Occurrences of DLI were recorded weekly using the World Health Organization’s dengue definition along with blood samples; results were compared with national surveillance dengue data. Risk factors of DLI were assessed using logistic regression. Results Among the 2007 people in the study, 83 DLI cases were reported: 69 in suburban Lao People's Democratic Republic, 11 in rural Thailand, three in rural Lao People's Democratic Republic and none in suburban Thailand. Four were confirmed DENV: two from suburban Lao People's Democratic Republic (both DENV-1) and two from rural Thailand (both DENV-2). Although the number of detected DLIs during the study period was low, DLI incidence was higher in the study compared to the dengue surveillance data in both countries. DLI in suburban Lao People's Democratic Republic was associated with age and occupation, but not with the number of pupae per person. Discussion This study highlights the importance of continuous clinical and vector surveillance for dengue to improve early detection of dengue and other mosquito-borne diseases in the region.
Collapse
|
10
|
Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102144. [PMID: 30274270 PMCID: PMC6211120 DOI: 10.3390/ijerph15102144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023]
Abstract
Arboviruses are responsible for a large burden of disease globally and are thus subject to intense epidemiological scrutiny. However, a variable notably absent from most epidemiological analyses has been the impact of violence on arboviral transmission and surveillance. Violence impedes surveillance and delivery of health and preventative services and affects an individual’s health-related behaviors when survival takes priority. Moreover, low and middle-income countries bear a disproportionately high burden of violence and related health outcomes, including vector borne diseases. To better understand the epidemiology of arboviral outbreaks in Cali, Colombia, we georeferenced chikungunya (CHIKV), dengue (DENV), and Zika (ZIKV) viral cases from The National System of Surveillance in Public Health between October 2014 and April 2016. We extracted homicide data from the municipal monthly reports and kernel density of homicide distribution from IdeasPaz. Crucially, an overall higher risk of homicide is associated with increased risk of reported DENV, lower rates of acute testing, and higher rates of lab versus clinical discordance. In the context of high violence as a potential barrier to access to preventive health services, a community approach to improve health and peace should be considered.
Collapse
|
11
|
Dinkar A, Singh J, Prakash P, Das A, Nath G. Hidden burden of chikungunya in North India; A prospective study in a tertiary care centre. J Infect Public Health 2018; 11:586-591. [DOI: 10.1016/j.jiph.2017.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/12/2017] [Accepted: 09/09/2017] [Indexed: 10/18/2022] Open
|
12
|
Wong KZ, Chu JJH. The Interplay of Viral and Host Factors in Chikungunya Virus Infection: Targets for Antiviral Strategies. Viruses 2018; 10:E294. [PMID: 29849008 PMCID: PMC6024654 DOI: 10.3390/v10060294] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) has re-emerged as one of the many medically important arboviruses that have spread rampantly across the world in the past decade. Infected patients come down with acute fever and rashes, and a portion of them suffer from both acute and chronic arthralgia. Currently, there are no targeted therapeutics against this debilitating virus. One approach to develop potential therapeutics is by understanding the viral-host interactions. However, to date, there has been limited research undertaken in this area. In this review, we attempt to briefly describe and update the functions of the different CHIKV proteins and their respective interacting host partners. In addition, we also survey the literature for other reported host factors and pathways involved during CHIKV infection. There is a pressing need for an in-depth understanding of the interaction between the host environment and CHIKV in order to generate potential therapeutics.
Collapse
Affiliation(s)
- Kai Zhi Wong
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06-05, Singapore 138673, Singapore.
| |
Collapse
|
13
|
Mendez-Dominguez N, Janssen-Aguilar R, Pacheco-Tucuch F, Inurreta-Diaz M, Gomez-Carro S. Chikungunya Fever in Clinically Diagnosed Patients: A Brief Report of Comparison Between Laboratory Confirmed and Discarded Cases. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2017; 12. [DOI: 10.5812/archcid.12980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
|