1
|
Muleta AJ, Lappan R, Stinear TP, Greening C. Understanding the transmission of Mycobacterium ulcerans: A step towards controlling Buruli ulcer. PLoS Negl Trop Dis 2021; 15:e0009678. [PMID: 34437549 PMCID: PMC8389476 DOI: 10.1371/journal.pntd.0009678] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a rare but chronic debilitating skin and soft tissue disease found predominantly in West Africa and Southeast Australia. While a moderate body of research has examined the distribution of M. ulcerans, the specific route(s) of transmission of this bacterium remain unknown, hindering control efforts. M. ulcerans is considered an environmental pathogen given it is associated with lentic ecosystems and human-to-human spread is negligible. However, the pathogen is also carried by various mammals and invertebrates, which may serve as key reservoirs and mechanical vectors, respectively. Here, we examine and review recent evidence from these endemic regions on potential transmission pathways, noting differences in findings between Africa and Australia, and summarising the risk and protective factors associated with Buruli ulcer transmission. We also discuss evidence suggesting that environmental disturbance and human population changes precede outbreaks. We note five key research priorities, including adoption of One Health frameworks, to resolve transmission pathways and inform control strategies to reduce the spread of Buruli ulcer. Buruli ulcer is a debilitating skin and soft tissue disease characterised by large ulcerative wounds that are treated with antibiotics or with adjunctive surgery for advanced cases. Found predominantly in West Africa and Southeast Australia, the causative agent is the environmental bacterial pathogen Mycobacterium ulcerans. Lack of understanding of transmission pathways, combined with the absence of a vaccine, has hindered efforts to control the spread of M. ulcerans. Here, in order to identify probable transmission pathways and inform future studies, we review literature linking M. ulcerans to environmental reservoirs, mammalian hosts, and potential invertebrate vectors. We also summarise factors and behaviours that reduce the risk of developing Buruli ulcer, to inform effective prevention strategies and further shed light on transmission pathways.
Collapse
Affiliation(s)
- Anthony J. Muleta
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rachael Lappan
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
2
|
Tracing Mycobacterium ulcerans along an alimentary chain in Côte d'Ivoire: A one health perspective. PLoS Negl Trop Dis 2020; 14:e0008228. [PMID: 32463813 PMCID: PMC7255608 DOI: 10.1371/journal.pntd.0008228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/17/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mycobacterium ulcerans is an environmental mycobacterium responsible for an opportunistic, noncontagious tropical infection named Buruli ulcer that necrotizes the skin and the subcutaneous tissues. M. ulcerans is thought to penetrate through breached skin after contact with contaminated wetland environments, yet the exact biotopes where M. ulcerans occurs remain elusive, hence obscuring the epidemiological chain of transmission of this opportunistic pathogen. Methodology/Principal findings Polymerase chain reaction investigations detected M. ulcerans in 39/46 (84.7%) rhizosphere specimens collected in 13 Buruli ulcer-endemic areas in Côte d’Ivoire and 3/20 (15%) specimens collected in a nonendemic area (P = 5.73.E-7); only 3/63 (4.7%) sediment specimens from sediment surrounding the rhizospheres were positive in endemic area (P = 6.51.E-12). High-throughput sequencing further detected three PCR-positive plants, Croton hirtus, Corton kongensis and Oriza sativa var. japonica (rice), in the rectal content of two M. ulcerans-positive wild Thryonomys swinderianus grasscutters that were hunted in Buruli ulcer-endemic areas, while no PCR-positive plants were detected in the rectal content of two negative control animals that were farmed in a nonendemic area. Conclusions/Significance Our data suggest an alimentary chain of transmission of M. ulcerans from plants to T. swinderianus grasscutters and people that utilize T. swinderianus as bush meat in Buruli ulcer-endemic areas in Côte d’Ivoire. Guidance to adopt protective measures and avoid any direct contact with potentially contaminated rhizospheres and with grasscutter intestinal content when preparing the animals for cooking should be established for at-risk populations. Buruli ulcer caused by inoculated Mycobacterium ulcerans is a tropical infection fibrosing subcutaneous tissues thus causing severe disabilities. The reservoir and the mode of transmission of M. ulcerans remain elusive. Here, using molecular approaches, we traced M. ulcerans along an alimentary chain comprising some plants and a small herbivore named Thryonomys swinderianus (grasscutters), in Côte d’Ivoire. Grasscutters are hunted animals, sold as bush meat. People in Buruli ulcer endemic regions spend much time in close contacts with this animal during hunting and subsequent evisceration with unprotected hands increasing their risk of contamination. Our findings demonstrate for the first time, the transmission of M. ulcerans through a food-chain and propose prophylactic measures against Buruli ulcer in Côte d’Ivoire.
Collapse
|
3
|
Buruli Ulcer, a Prototype for Ecosystem-Related Infection, Caused by Mycobacterium ulcerans. Clin Microbiol Rev 2017; 31:31/1/e00045-17. [PMID: 29237707 DOI: 10.1128/cmr.00045-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Buruli ulcer is a noncontagious disabling cutaneous and subcutaneous mycobacteriosis reported by 33 countries in Africa, Asia, Oceania, and South America. The causative agent, Mycobacterium ulcerans, derives from Mycobacterium marinum by genomic reduction and acquisition of a plasmid-borne, nonribosomal cytotoxin mycolactone, the major virulence factor. M. ulcerans-specific sequences have been readily detected in aquatic environments in food chains involving small mammals. Skin contamination combined with any type of puncture, including insect bites, is the most plausible route of transmission, and skin temperature of <30°C significantly correlates with the topography of lesions. After 30 years of emergence and increasing prevalence between 1970 and 2010, mainly in Africa, factors related to ongoing decreasing prevalence in the same countries remain unexplained. Rapid diagnosis, including laboratory confirmation at the point of care, is mandatory in order to reduce delays in effective treatment. Parenteral and potentially toxic streptomycin-rifampin is to be replaced by oral clarithromycin or fluoroquinolone combined with rifampin. In the absence of proven effective primary prevention, avoiding skin contamination by means of clothing can be implemented in areas of endemicity. Buruli ulcer is a prototype of ecosystem pathology, illustrating the impact of human activities on the environment as a source for emerging tropical infectious diseases.
Collapse
|
4
|
Aboagye SY, Asare P, Otchere ID, Koka E, Mensah GE, Yirenya-Tawiah D, Yeboah-Manu D. Environmental and Behavioral Drivers of Buruli Ulcer Disease in Selected Communities Along the Densu River Basin of Ghana: A Case-Control Study. Am J Trop Med Hyg 2017; 96:1076-1083. [PMID: 28500810 PMCID: PMC5417198 DOI: 10.4269/ajtmh.16-0749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The exact route of transmission of Mycobacterium ulcerans (MU) (causative agent of Buruli ulcer [BU]), risk factors, and reservoir hosts are not clearly known, although it has been identified as an environmental pathogen. This study assessed potential environmental and behavioral risk factors that influence BU infections. We conducted a case-control study where cases were matched by their demographic characteristics and place of residence. A structured questionnaire was administered to solicit information on the environmental and behavioral factors of participants that may expose them to infection. A total of 176 cases and 176 controls were enrolled into the study. Multivariate conditional logistic regression analysis identified farming in swampy areas (odds ratio [OR] = 4.10, 95% confidence interval [CI] = 3.82–7.18), farming while wearing short clothing (OR = 1,734.1, 95% CI = 68.1–44,120.9), insect bite (OR = 988.3, 95% CI = 31.4–31,115.6), and application of leaves on wounds (OR = 6.23, 95% CI = 4.74–18.11) as potential risk factors. Farming in long clothing (OR = 0.000, 95% CI = 0.00–0.14), washing wound with water and soap (OR = 0.37, 95% CI = 0.29–0.98), and application of adhesive bandage on wounds (OR = 0.31, 95% CI = 0.15–0.82) were found to be protective against BU infection. In the absence of the exact MU transmission mechanisms, education of public in BU-endemic zones on the use of protective clothing during farming activities to limit exposure of the skin and proper wound care management would be essential in the fight against BU.
Collapse
Affiliation(s)
- Samuel Yaw Aboagye
- Institute of Environmental and Sanitation Studies, University of Ghana, Accra, Ghana.,Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Eric Koka
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - George Ekow Mensah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dzidzo Yirenya-Tawiah
- Institute of Environmental and Sanitation Studies, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
5
|
An unexpected waterborne traveller. Infection 2017; 45:391-392. [DOI: 10.1007/s15010-016-0979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 12/30/2016] [Indexed: 11/26/2022]
|
6
|
Zingue D, Bouam A, Militello M, Drancourt M. High-Throughput Carbon Substrate Profiling of Mycobacterium ulcerans Suggests Potential Environmental Reservoirs. PLoS Negl Trop Dis 2017; 11:e0005303. [PMID: 28095422 PMCID: PMC5271411 DOI: 10.1371/journal.pntd.0005303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/27/2017] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mycobacterium ulcerans is a close derivative of Mycobacterium marinum and the agent of Buruli ulcer in some tropical countries. Epidemiological and environmental studies pointed towards stagnant water ecosystems as potential sources of M. ulcerans, yet the ultimate reservoirs remain elusive. We hypothesized that carbon substrate determination may help elucidating the spectrum of potential reservoirs. METHODOLOGY/PRINCIPAL FINDINGS In a first step, high-throughput phenotype microarray Biolog was used to profile carbon substrates in one M. marinum and five M. ulcerans strains. A total of 131/190 (69%) carbon substrates were metabolized by at least one M. ulcerans strain, including 28/190 (15%) carbon substrates metabolized by all five M. ulcerans strains of which 21 substrates were also metabolized by M. marinum. In a second step, 131 carbon substrates were investigated, through a bibliographical search, for their known environmental sources including plants, fruits and vegetables, bacteria, algae, fungi, nematodes, mollusks, mammals, insects and the inanimate environment. This analysis yielded significant association of M. ulcerans with bacteria (p = 0.000), fungi (p = 0.001), algae (p = 0.003) and mollusks (p = 0.007). In a third step, the Medline database was cross-searched for bacteria, fungi, mollusks and algae as potential sources of carbon substrates metabolized by all tested M. ulcerans; it indicated that 57% of M. ulcerans substrates were associated with bacteria, 18% with alga, 11% with mollusks and 7% with fungi. CONCLUSIONS This first report of high-throughput carbon substrate utilization by M. ulcerans would help designing media to isolate and grow this pathogen. Furthermore, the presented data suggest that potential M. ulcerans environmental reservoirs might be related to micro-habitats where bacteria, fungi, algae and mollusks are abundant. This should be followed by targeted investigations in Buruli ulcer endemic regions.
Collapse
Affiliation(s)
- Dezemon Zingue
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| | - Amar Bouam
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| | - Muriel Militello
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| | - Michel Drancourt
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| |
Collapse
|
7
|
Asmar S, Sassi M, Phelippeau M, Drancourt M. Inverse correlation between salt tolerance and host-adaptation in mycobacteria. BMC Res Notes 2016; 9:249. [PMID: 27129386 PMCID: PMC4850692 DOI: 10.1186/s13104-016-2054-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Mycobacterium includes host-adapted organisms regarded as obligate and opportunistic pathogens and environmental organisms. Factors contributing to this wide range of adaptations are poorly known. RESULTS We studied the salt tolerance of 46 Mycobacterium species of medical interest. Representative strains of the Mycobacterium tuberculosis complex, Mycobacterium avium complex, Mycobacterium chelonae-abscessus complex, Mycobacterium ulcerans, Mycobacterium marinum, Mycobacterium lentiflavum, Mycobacterium fortuitum and Mycobacterium conceptionense were inoculated on Middlebrook 7H10 medium supplemented with 0-10% sodium chloride. Colonies were counted after 2-4 week incubation at the appropriate 30-37 °C temperature depending on the tested strain. Further comparative genomics was done on 15 Mycobacterium strains representing the spectrum of salt-tolerance of mycobacteria. Based on the results the different species were grouped according to their salt tolerance into a "salt-sensitive" group (growth up to ≤3% salt) containing the M. tuberculosis complex, Mycobacterium chelonae, Mycobacterium lentiflavum, Mycobacterium ulcerans and Mycobacterium marinum; a "salt-intermediate" group (growth between 4 and 6% salt) comprising Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium chimaera and a "salt-resistant" group (growth up to >6%) comprising Mycobacterium homonissuis, Mycobacterium bolettii, Mycobacterium fortuitum and Mycobacterium conceptionense. Genomic analysis revealed that 290 genes were unique to species belonging to the salt-sensitive group; and that 15% were annotated as being functionally associated with the ESX secretion systems Pro-Glu and Pro-Pro-Glu family proteins. CONCLUSIONS In this work we found an inverse correlation between salt tolerance and host adaptation. We thus propose that salinity is one of the multiple factors determining the ecological niches of mycobacteria.
Collapse
Affiliation(s)
- Shady Asmar
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, UMR 7278, IRD 198, Faculté de Médecine, Aix-Marseille Université, 27, Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | | | - Michael Phelippeau
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, UMR 7278, IRD 198, Faculté de Médecine, Aix-Marseille Université, 27, Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Michel Drancourt
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, UMR 7278, IRD 198, Faculté de Médecine, Aix-Marseille Université, 27, Boulevard Jean Moulin, 13385, Marseille Cedex 5, France.
| |
Collapse
|
8
|
Tian RBD, Niamké S, Tissot-Dupont H, Drancourt M. Detection of Mycobacterium ulcerans DNA in the Environment, Ivory Coast. PLoS One 2016; 11:e0151567. [PMID: 26982581 PMCID: PMC4794205 DOI: 10.1371/journal.pone.0151567] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/01/2016] [Indexed: 11/19/2022] Open
Abstract
Background Ivory Coast is a West African country with the highest reported cases of Buruli ulcer, a disabling subcutaneous infection due to Mycobacterium ulcerans. However, the prevalence of environmental M. ulcerans is poorly known in this country. Methods We collected 496 environmental specimens consisting of soil (n = 100), stagnant water (n = 200), plants (n = 100) and animal feces (n = 96) in Ivory Coast over five months in the dry and wet seasons in regions which are free of Buruli ulcer (control group A; 250 specimens) and in regions where the Buruli ulcer is endemic (group B; 246 specimens). After appropriate total DNA extraction incorporating an internal control, the M. ulcerans IS2404 and KR-B gene were amplified by real-time PCR in samples. In parallel, a calibration curve was done for M. ulcerans Agy99 IS2404 and KR-B gene. Results Of 460 samples free of PCR inhibition, a positive real-time PCR detection of insertion sequence IS2404 and KR-B gene was observed in 1/230 specimens in control group A versus 9/230 specimens in group B (P = 0.02; Fisher exact test). Positive specimens comprised seven stagnant water specimens, two feces specimens confirmed to be of Thryonomys swinderianus (agouti) origin by real-time PCR of the cytb gene; and one soil specimen. Extrapolation from the calibration curves indicated low inoculums ranging from 1 to 102 mycobacteria/mL. Conclusion This study confirms the presence of M. ulcerans in the watery environment surrounding patients with Buruli ulcer in Ivory Coast. It suggests that the agouti, which is in close contacts with populations, could play a role in the environmental cycle of M. ulcerans, as previously suggested for the closely related possums in Australia.
Collapse
Affiliation(s)
- Roger Bi Diangoné Tian
- Aix Marseille Université, URMITE, UMR, CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, Marseille, France
- Laboratoire de biotechnologies, UFR Biosciences, Université Félix Houphouet Boigny Abidjan, Côte d’Ivoire
| | - Sébastian Niamké
- Laboratoire de biotechnologies, UFR Biosciences, Université Félix Houphouet Boigny Abidjan, Côte d’Ivoire
| | - Hervé Tissot-Dupont
- Aix Marseille Université, URMITE, UMR, CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, Marseille, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR, CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, Marseille, France
- * E-mail:
| |
Collapse
|