1
|
Meng T, Ding W, Lv D, Wang C, Xu Y. Lactate dehydrogenase to albumin ratio (LAR) is a novel predictor of fatal outcome in patients with SFTS: an observational study. Front Public Health 2024; 12:1459712. [PMID: 39741938 PMCID: PMC11685223 DOI: 10.3389/fpubh.2024.1459712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/30/2024] [Indexed: 01/03/2025] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is a serious infectious disease. This study explored the prognostic value of lactate dehydrogenase (LDH) to albumin (ALB) ratio (LAR) levels in fatal outcomes of the disease. Methods Two-hundred and nine patients with SFTS were enrolled in this study. Based on the prognosis, patients were divided into survival and deceased groups. Laboratory metrics were compared by univariate Cox regression and multivariate Cox regression analyses. The prognostic risk factors for SFTS disease were discussed, and the receiver operator characteristic (ROC) curve and the Kaplan-Meier survival curve were plotted to analyze the predictive value of independent risk factors on disease prognosis. Results A total of 209 patients with SFTS, including 152 in the survival group and 57 in the death group, were enrolled. The median age of 209 SFTS patients was 64 years. Three indicators, age, aspartate aminotransferase (AST), and LAR, were identified as predictors of mortality in patients with SFTS. The area under the ROC curve of LAR was the highest (0.835), followed by that of AST (0.794), and age (0.720). The Kaplan-Meier survival curve showed an increased case fatality rate, of >1.4691, in patients with LAR. Conclusion Elevated LAR level on admission is an independent risk factor for fatal outcomes in patients with SFTS; this can help healthcare professionals identify patients with SFTS having a high risk of fatal outcomes.
Collapse
Affiliation(s)
- Tao Meng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenqian Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dongmei Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenxu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Liu R, He F, Chen S, Wang J, Yang C, Zhan Z, Xiong Y, Cai L. Pathogen isolation and traceability analysis of a fatal case of severe fever with thrombocytopenia syndrome virus (SFTSV) infectious encephalitis in China. Virol J 2024; 21:300. [PMID: 39578877 PMCID: PMC11585235 DOI: 10.1186/s12985-024-02564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The initial clinical symptoms of severe fever with thrombocytopenia syndrome (SFTS) mainly include high fever, thrombocytopenia and gastrointestinal symptoms, and severe patients may suffer from severe complications such as multiple organ failure, which can lead to death. Studies have shown that central nervous system symptoms are associated with severe adverse outcomes of SFTS, but there are few reports on confirmed cases of SFTS encephalitis. This is a special case in which her initial SFTS symptoms were atypical, while the disease deteriorated rapidly after the appearance of encephalitis. The purpose of this study was to report the clinical and epidemiological features of this case, isolate and trace the SFTS virus (SFTSV) strain, identify the genotype of the strain, and speculate on the infection route to provide an important reference for the diagnosis and control of SFTSV. METHODS Cerebrospinal fluid and serum samples were collected, multipathogen detection was performed via next-generation sequencing (NGS), and SFTSV virus isolation was performed via inoculation of the samples with Vero cells. The serum of key populations closed to patients, parasitic ticks on the surface of domestic animal bodies and environmentally free ticks were collected for SFTSV monitoring. The whole genomes of the virus strains and positive nucleic acid samples were sequenced and compared with the GenBank reference sequence to construct a phylogenetic analysis tree. RESULTS This patient was diagnosed with SFTSV encephalitis, and the viral strain was successfully isolated. The SFTSV strain is closely related to the Hubei strain HB2017-02, and the SFTSV M and L fragments belong to the B genotype, whereas the M fragments belong to the F genotype. In addition, the similarities of coding sequences of case strain to those of tick-carried SFTSV strain in the residence were more than 99.9%. CONCLUSIONS The patient was confirmed to have SFTSV-infected encephalitis and died rapidly. The SFTSV strain was of Chinese local origin, and tick bites were the most likely route of infection.
Collapse
Affiliation(s)
- Rongjiao Liu
- Microbiological Laboratory, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Fangling He
- Microbiological Laboratory, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Shengbao Chen
- Infectious Disease Prevention and Control Department, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Juan Wang
- Microbiological Laboratory, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Chan Yang
- Microbiological Laboratory, Xiangxi Autonomous Prefecture Center for Disease Control and Prevention, Xiangxi, China
| | - Zhifei Zhan
- Microbiological Laboratory, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Yaru Xiong
- BSL-3 Biosafety Laboratory, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Liang Cai
- Microbiological Laboratory, Hunan Provincial Center for Disease Control and Prevention, Changsha, China.
| |
Collapse
|
3
|
Jang H, Casel MAB, Jang SG, Choi JH, Gil J, Rollon R, Cheun SY, Kim YI, Song MS, Choi YK. Seasonal dynamics of Haemaphysalis tick species as SFTSV vectors in South Korea. Microbiol Spectr 2024; 12:e0048924. [PMID: 39345179 PMCID: PMC11537100 DOI: 10.1128/spectrum.00489-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024] Open
Abstract
Ticks pose a significant public health threat due to their ability to transmit various pathogens, including emerging tick-borne diseases. This study conducted a comprehensive surveillance of Haemaphysalis tick species and their severe fever with thrombocytopenia syndrome virus (SFTSV) infection rates in South Korea throughout the year 2023, from January to December. To ensure accurate and rapid identification of the prevalent Haemaphysalis tick species in South Korea, we designed PCR primer sets targeting the ITS1 gene, specifically distinguishing Haemaphysalis longicornis from Haemaphysalis flava. Among the 10,343 ticks collected from wild animals, H. longicornis constituted the majority, accounting for 65.5% (6,784/10,343 ticks), followed by H. flava at 33.8% (3,491/10,343 ticks), and Ixodes nipponensis at 0.7% (68/10,343 ticks). These identified ticks were then categorized into 811 pools, with 63 pools testing positive for SFTSV. Remarkably, the prevalence of SFTSV-positive H. longicornis ticks peaked during the summer months, aligning with heightened human outdoor activities and, consequently, an increased risk of human exposure. Conversely, it is noteworthy that H. flava exhibited a higher prevalence during the winter season, reaching its peak in January, with an SFTSV minimum infection rate similar to that of H. longicornis. These findings underscore the year-round presence of Haemaphysalis ticks as potential vectors for SFTSV, extending the temporal window for potential human exposure. Consequently, these results emphasize the necessity for active and continuous field surveillance to comprehensively understand and mitigate the public health risks associated with these tick-borne pathogens. IMPORTANCE To date, the majority of tick surveillance studies have primarily focused on warmer seasons, which are considered optimal periods for ticks to actively seek hosts and transmit pathogens through blood-feeding activities. Consequently, tick species active during winter have often been overlooked, leading to an underestimation of their significance in transmitting severe fever with thrombocytopenia syndrome virus (SFTSV). In this study, we aimed to examine year-round tick prevalence with SFTSV and illuminate the role of the winter-dominant species, Haemaphysalis flava, in South Korea. Through rigorous identification facilitated by a primer set designed specifically for this purpose, we emphasize that H. flava, a competent vector species, harbors SFTSV in the winter season, thereby acting as an overwintering reservoir for the virus. This phenomenon may contribute to a higher infection rate among ticks in the following year.
Collapse
Affiliation(s)
- Hyunwoo Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Mark Anthony B. Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Seung-gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Jeong Ho Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Juryeon Gil
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - So youn Cheun
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Young-Il Kim
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Min Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, South Korea
| | - Young Ki Choi
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, South Korea
| |
Collapse
|
4
|
Dong Y, Lin SH, Jiang L, Liu H. Clinical characteristics and risk factors of 267 patients having severe fever with thrombocytopenia syndrome-new epidemiological characteristics of fever with thrombocytopenia syndrome: Epidemiological characteristics of SFTS. Medicine (Baltimore) 2022; 101:e31947. [PMID: 36550925 PMCID: PMC9771163 DOI: 10.1097/md.0000000000031947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To analyze the epidemiological distribution, clinical characteristics, and prognostic risk factors of patients having severe fever with thrombocytopenia syndrome (SFTS). METHODS We enrolled 790 patients with SFTS divided into the ordinary group and the severe group, analyzed the clinical characteristics, and screened the risk factors of severious patients by univariate logistic regression analysis. RESULTS Most of the 790 patients (SFTS) are farmers (84.56%). The proportion of patients with fieldwork history was 72.41%, of which 21.27% had a clear history of a tick bite and 98.61% were sporadic cases. The annual peak season is from April to November. 16.33% patients were not accompanied by fever. The incidence of severe thrombocytopenia was 47.59%. They were statistically significant between the 2 groups in indicators such as age, hypertension, coronary heart disease, diabetes mellitus, bunyavirus nucleic acid load and mean platelet count (P < .05). Multivariate non conditional Logistic regression analysis showed that the risk factors of the mild patients deteriorating severe disease were age (OR = 1.985, P ≤ .003), diabetes mellitus (OR = 1.702, P ≤ .001), coronary heart disease (OR = 1.381, P ≤ .003), platelet count (OR = 2.592, P ≤ .001), viral nucleic acid loading (OR = 3.908, P ≤ .001). CONCLUSION The incidence population and seasonal distribution characteristics of patients with SFTS are obvious. The risk factors for poor prognosis of severe patients are old age, multiple basic medical histories, high viral load, a serious decrease of mean platelet count, and delay of treatment time.
Collapse
Affiliation(s)
- Yu Dong
- Department of Gastroenterology, Shandong, Provincial hospital affiliated to Shandong First Medical University, P.R.China
| | - Shao-hua Lin
- Department of Infectious Disease, Rongcheng Hospital Affiliated to Shandong First Medical University, Rongcheng, P.R.China
| | - Ling Jiang
- Department of Clinical Laboratory Center, Rongcheng Hospital Affiliated to Shandong First Medical University, Rongcheng, P.R.China
| | - Hui Liu
- Department of Gastroenterology, Shandong, Provincial hospital affiliated to Shandong University, Jinan, P.R.China
- * Correspondence: Hui Liu, Department of Gastroenterology, Shandong, Provincial hospital affiliated to Shandong University, Jinan 250021, P.R.China (e-mail: )
| |
Collapse
|
5
|
Chaudhuri D, Datta J, Majumder S, Giri K. In silico study on miRNA regulation and NSs protein interactome characterization of the SFTS virus. J Mol Graph Model 2022; 117:108291. [PMID: 35977432 DOI: 10.1016/j.jmgm.2022.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023]
Abstract
Severe fever with thrombocytopenia syndrome causing virus i.e. SFTS virus has increased in the last few years. The underlying cause and mechanism of disease progression and development of symptoms is not well known. Many viruses including Hepatitis B, Hepatitis C, HIV-1, Herpes virus, Dengue virus and many others have been seen to regulate their functions at the miRNA level. This study aimed to find out those cellular miRNAs, which can be mimicked or antagonized by the viral genome and analyze the effect of these miRNAs on various gene functions. Investigations in this study suggest a correlation between miRNA regulation with the disease symptoms and progression. By exhaustive literature survey we have tried to identify the interacting partners of the Non Structural S (NSs) protein and characterized the protein-protein interactions. The binding interface that can serve as target for therapeutic studies involving the interfacial residues was analyzed. This study would serve as an avenue to design therapeutics making use of not only protein-protein interactions but also miRNA based regulation as well.
Collapse
Affiliation(s)
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Kalyan Giri
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
6
|
Susceptibility of Type I Interferon Receptor Knock-Out Mice to Heartland Bandavirus (HRTV) Infection and Efficacy of Favipiravir and Ribavirin in the Treatment of the Mice Infected with HRTV. Viruses 2022; 14:v14081668. [PMID: 36016290 PMCID: PMC9416051 DOI: 10.3390/v14081668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Heartland bandavirus (HRTV) is an emerging tick-borne virus that is distributed in the United States and that causes febrile illness with thrombocytopenia and leukocytopenia. It is genetically close to Dabie bandavirus, which is well known as severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV). The mortality rate of human HRTV infection is approximately 10%; however, neither approved anti-HRTV agents nor vaccines exist. An appropriate animal model should be developed to evaluate the efficacy of antiviral agents and vaccines against HRTV. The susceptibility of IFNAR−/− mice with HRTV infection was evaluated using subcutaneous, intraperitoneal, and retro-orbital inoculation routes. IFNAR−/− mice intraperitoneally infected with HRTV showed the most severe clinical signs, and the 50% lethal dose was 3.2 × 106 TCID50. Furthermore, to evaluate the utility of a novel lethal IFNAR−/− mice model, IFNAR−/− mice were orally administered favipiravir, ribavirin, or a solvent for 5 days immediately after a lethal dose of HRTV inoculation. The survival rates of the favipiravir-, ribavirin-, and solvent-administered mice were 100, 33, and 0%, respectively. The changes in bodyweights and HRTV RNA loads in the blood of favipiravir-treated IFNAR−/− mice were the lowest among the three groups, which suggests that favipiravir is a promising drug candidate for the treatment of patients with HRTV infection.
Collapse
|
7
|
Tao M, Liu Y, Ling F, Chen Y, Zhang R, Ren J, Shi X, Guo S, Lu Y, Sun J, Jiang J. Severe Fever With Thrombocytopenia Syndrome in Southeastern China, 2011-2019. Front Public Health 2022; 9:803660. [PMID: 35223761 PMCID: PMC8864090 DOI: 10.3389/fpubh.2021.803660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/31/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease, and the number of cases has increased in recent years in Zhejiang Province, China. However, whether the seasonal distribution, geographic distribution, and demographic characteristics of SFTS have changed with the increase of incidence was unclear. Materials and Methods Data on SFTS cases in Zhejiang Province and tick density in Daishan County from 2011 to 2019 were collected. The changing epidemiological characteristics of SFTS including seasonal distribution, geographical distribution, and demographic features were analyzed using descriptive statistical methods, Global Moran's I, local Getis-Ord Gi* statistic, and spatial scan statistic. Results A total of 463 SFTS cases including 53 (11.45%) deaths were reported from 2011 to 2019 in Zhejiang Province, and the annual number of cases showed increasing tendency. SFTS cases were reported in almost half of the counties (40/89) of Zhejiang Province. Elderly farmers accounted for most cases and the proportion of farmers has increased. Most cases (81.21%) occurred during April and August. The interval from illness onset to confirmation was significantly shortened (Z = 5.194, p < 0.001). The majority of cases were reported in Zhoushan City from 2011 to 2016, but most cases were reported in Taizhou City since 2017. Discussion We observed dynamic changes in the seasonal distribution, geographical distribution, and demographic features of SFTS, and comprehensive intervention measures, such as clearance of breeding sites, killing of tick adults, and health education should be strengthened in farmers of the key areas according to the changed epidemiological characteristics.
Collapse
Affiliation(s)
- Mingyong Tao
- Medical School, Ningbo University, Ningbo, China
| | - Ying Liu
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Feng Ling
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yijuan Chen
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Rong Zhang
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jiangping Ren
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xuguang Shi
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Song Guo
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ye Lu
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jimin Sun
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianmin Jiang
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
8
|
Jang WS, Lim DH, Choe YL, Nam J, Moon KC, Kim C, Choi M, Park I, Park DW, Lim CS. Developing a multiplex loop-mediated isothermal amplification assay (LAMP) to determine severe fever with thrombocytopenia syndrome (SFTS) and scrub typhus. PLoS One 2022; 17:e0262302. [PMID: 35171943 PMCID: PMC8849512 DOI: 10.1371/journal.pone.0262302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) and scrub typhus are endemic zoonotic diseases that pose significant public health threats in East Asia. As these two diseases share common clinical features, as well as overlapping disease regions, it is difficult to differentiate between SFTS and scrub typhus. A multiplex reverse-transcription loop‑mediated isothermal amplification (RT-LAMP) assay was developed to detect large segments and GroES genes for SFTS virus (SFTSV) and Orientia tsutsugamushi (OT). The performance of the RT-LAMP assay was compared and evaluated with those of commercial PowerChek™ SFTSV real-time PCR and LiliF™ TSUTSU nested PCR for 23 SFTS and 12 scrub typhus clinical samples, respectively. The multiplex SFTSV/OT/Internal control (IC) RT-LAMP assay showed comparable sensitivity (91.3%) with that of commercial PowerChek™ SFTSV Real-time PCR (95.6%) and higher sensitivity (91.6%) than that of LiliF™ TSUTSU nested PCR (75%). In addition, the multiplex SFTSV/OT RT-LAMP assay showed 100% specificity and no cross-reactivity for blood from uninfected healthy patients and samples from patients infected with other fever viruses. Thus, the multiplex SFTSV/OT/IC RT-LAMP assay could serve as a useful point-of-care molecular diagnostic test for SFTS and scrub typhus.
Collapse
Affiliation(s)
- Woong Sik Jang
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Da Hye Lim
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Young Lan Choe
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Jeonghun Nam
- Department of Song‐do Bio Engineering, Incheon Jaeneung University, Incheon, Korea
- Artificial Intelligence (AI)‐Bio Research Center, Incheon Jaeneung University, Incheon, Korea
| | - Kyung Chul Moon
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Chaewon Kim
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Minkyeong Choi
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Insu Park
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Dae Won Park
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Chae Seung Lim
- Departments of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, Seoul, Korea
| |
Collapse
|
9
|
Suspected Transmission of Severe Fever with Thrombocytopenia Syndrome Virus from a Cat to a Veterinarian by a Single Contact: A Case Report. Viruses 2022; 14:v14020223. [PMID: 35215817 PMCID: PMC8874511 DOI: 10.3390/v14020223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 01/06/2023] Open
Abstract
A 67-year-old male veterinarian presented with fatigue, anorexia, and diarrhea. Although there were no tick bite marks, we suspected severe fever with thrombocytopenia syndrome (SFTS) due to bicytopenia, mild disturbance of consciousness, and a history of outdoor activities. Thus, we started immunoglobulin therapy immediately. A serum reverse transcription-polymerase chain reaction (RT-PCR) test for SFTS virus (SFTSV) was positive. The patient had treated a cat with thrombocytopenia 10 days prior to admission. The cat’s serum SFTSV RT-PCR test result was positive, and the whole genome sequences of the patient’s and cat’s SFTSV were identical, suggesting the possibility of transmission from the cat to the patient. Other cases of direct cat-to-human SFTV transmission have been reported recently. Mucous membranes should be protected, including eye protection, in addition to standard precautions, when in contact with any cat with suspected SFTS.
Collapse
|
10
|
TRAN NT, SHIMODA H, MIZUNO J, ISHIJIMA K, YONEMITSU K, MINAMI S, Supriyono, KURODA Y, TATEMOTO K, MENDOZA MV, TAKANO A, MUTO M, ISAWA H, SAWABE K, HAYASAKA D, MAEDA K. Epidemiological study of Kabuto Mountain virus, a novel uukuvirus, in Japan. J Vet Med Sci 2022; 84:82-89. [PMID: 34819413 PMCID: PMC8810333 DOI: 10.1292/jvms.21-0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022] Open
Abstract
Kabuto Mountain virus (KAMV), the new member of the genus Uukuvirus, was isolated from the tick Haemaphysalis flava in 2018 in Japan. To date, there is no information on KAMV infection in human and animals. Therefore, serological surveillance of the infection among humans and wild mammals was conducted by virus-neutralization (VN) test and indirect immunofluorescence assay (IFA). Sera of 24 humans, 59 monkeys, 171 wild boars, 233 Sika deer, 7 bears, and 27 nutria in Yamaguchi Prefecture were analyzed by VN test. The positive ratio of humans, monkeys, wild boars, and Sika deer were 20.8%, 3.4%, 33.9% and 4.7%, respectively. No positive samples were detected in bears and nutria. The correlation coefficients between VN test and IFA in human, monkey, wild boar, and Sika deer sera were 0.5745, 0.7198, 0.9967 and 0.9525, respectively. In addition, KAMV was detected in one pool of Haemaphysalis formosensis ticks in Wakayama Prefecture. These results indicated that KAMV or KAMV-like virus is circulating among many wildlife and ticks, and that this virus incidentally infects humans.
Collapse
Affiliation(s)
- Ngo T.B. TRAN
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Hiroshi SHIMODA
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Junko MIZUNO
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Keita ISHIJIMA
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kenzo YONEMITSU
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Shohei MINAMI
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Supriyono
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Yudai KURODA
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kango TATEMOTO
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Milagros V. MENDOZA
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ai TAKANO
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Masahiko MUTO
- Yamaguchi Prefectural Grand Medical Center, 10077 Osaki, Hofu, Yamaguchi 747-8511, Japan
| | - Haruhiko ISAWA
- Department of Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kyoko SAWABE
- Department of Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Daisuke HAYASAKA
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ken MAEDA
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
11
|
Abstract
AbstractEvidence climate change is impacting ticks and tick-borne infections is generally lacking. This is primarily because, in most parts of the world, there are no long-term and replicated data on the distribution and abundance of tick populations, and the prevalence and incidence of tick-borne infections. Notable exceptions exist, as in Canada where the northeastern advance of Ixodes scapularis and Lyme borreliosis in the USA prompted the establishment of tick and associated disease surveillance. As a result, the past 30 years recorded the encroachment and spread of I. scapularis and Lyme borreliosis across much of Canada concomitant with a 2-3 °C increase in land surface temperature. A similar northerly advance of I. ricinus [and associated Lyme borreliosis and tick-borne encephalitis (TBE)] has been recorded in northern Europe together with expansion of this species’ range to higher altitudes in Central Europe and the Greater Alpine Region, again concomitant with rising temperatures. Changes in tick species composition are being recorded, with increases in more heat tolerant phenotypes (such as Rhipicephalus microplus in Africa), while exotic species, such as Haemaphysalis longicornis and Hyalomma marginatum, are becoming established in the USA and Southern Europe, respectively. In the next 50 years these trends are likely to continue, whereas, at the southern extremities of temperate species’ ranges, diseases such as Lyme borreliosis and TBE may become less prevalent. Where socioeconomic conditions link livestock with livelihoods, as in Pakistan and much of Africa, a One Health approach is needed to tackling ticks and tick-borne infections under the increasing challenges presented by climate change.
Collapse
|
12
|
Cho G, Lee S, Lee H. Estimating severe fever with thrombocytopenia syndrome transmission using machine learning methods in South Korea. Sci Rep 2021; 11:21831. [PMID: 34750465 PMCID: PMC8575988 DOI: 10.1038/s41598-021-01361-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease in China, Japan, and Korea. This study aimed to estimate the monthly SFTS occurrence and the monthly number of SFTS cases in the geographical area in Korea using epidemiological data including demographic, geographic, and meteorological factors. Important features were chosen through univariate feature selection. Two models using machine learning methods were analyzed: the classification model in machine learning (CMML) and regression model in machine learning (RMML). We developed a novel model incorporating the CMML results into RMML, defined as modified-RMML. Feature importance was computed to assess the contribution of estimating the number of SFTS cases using modified-RMML. Aspect to the accuracy of the novel model, the performance of modified-RMML was improved by reducing the MSE for the test data as 12.6–52.2%, compared to the RMML using five machine learning methods. During the period of increasing the SFTS cases from May to October, the modified-RMML could give more accurate estimation. Computing the feature importance, it is clearly observed that climate factors such as average maximum temperature, precipitation as well as mountain visitors, and the estimation of SFTS occurrence obtained from CMML had high Gini importance. The novel model incorporating CMML and RMML models improves the accuracy of the estimation of SFTS cases. Using the model, climate factors, including temperature, relative humidity, and mountain visitors play important roles in transmitting SFTS in Korea. Our findings highlighted that the guidelines for mountain visitors to prevent SFTS transmissions should be addressed. Moreover, it provides important insights for establishing control interventions that predict early identification of SFTS cases.
Collapse
Affiliation(s)
- Giphil Cho
- Finance·Fishery·Manufacture Industrial Mathematics Center on Big Data, Pusan National University, Busan, 46241, Korea
| | - Seungheon Lee
- Department of Mathematics, Pusan National University, Busan, 46241, Korea
| | - Hyojung Lee
- Department of Statistics, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
13
|
Pérez-Sautu U, Wiley MR, Prieto K, Chitty JA, Haddow AD, Sánchez-Lockhart M, Klein TA, Kim HC, Chong ST, Kim YJ, Choi BS, Palacios GF. Novel viruses in hard ticks collected in the Republic of Korea unveiled by metagenomic high-throughput sequencing analysis. Ticks Tick Borne Dis 2021; 12:101820. [PMID: 34555711 DOI: 10.1016/j.ttbdis.2021.101820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022]
Abstract
Ticks are vectors of a wide range of zoonotic viruses of medical and veterinary importance. Recently, metagenomics studies demonstrated that they are also the source of potentially pathogenic novel viruses. During the period from 2015 to 2017, questing ticks were collected by dragging the vegetation from geographically distant locations in the Republic of Korea (ROK) and a target-independent high-throughput sequencing method was utilized to study their virome. A total of seven viruses, including six putative novel viral entities, were identified. Genomic analysis showed that the novel viruses were most closely related to members in the orders Jingchuvirales and Bunyavirales. Phylogenetic reconstruction showed that the Bunyavirales-like viruses grouped in the same clade with other viruses within the Nairovirus and Phlebovirus genera, while the novel Jingchuvirales-like virus grouped together with other viruses within the family Chuviridae. Real-time RT-PCR was used to determine the geographic distribution and prevalence of these viruses in adult ticks. These novel viruses have a wide geographic distribution in the ROK with prevalences ranging from 2% to 18%. Our study expands the knowledge about the composition of the tick virome and highlights the wide diversity of viruses they harbor in the ROK. The discovery of novel viruses associated with ticks in the ROK highlights the need for an active tick-borne disease surveillance program to identify possible reservoirs of putative novel human pathogens.
Collapse
Affiliation(s)
- Unai Pérez-Sautu
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA.
| | - Michael R Wiley
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; College of Public Health, University of Nebraska Medical Center, Omaha, 68198, Nebraska, USA
| | - Karla Prieto
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; College of Public Health, University of Nebraska Medical Center, Omaha, 68198, Nebraska, USA
| | - Joseph A Chitty
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA
| | - Andrew D Haddow
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, 30144, Georgia, USA
| | - Mariano Sánchez-Lockhart
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; Department of Pathology & Microbiology, University of Nebraska Medical Centre, Omaha, 68198, Nebraska, USA
| | - Terry A Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea /65(th) Medical Brigade, Unit 15281, APO AP 96271, USA
| | - Heung-Chul Kim
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea /65(th) Medical Brigade, Unit 15281, APO AP 96271, USA
| | - Sung-Tae Chong
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea /65(th) Medical Brigade, Unit 15281, APO AP 96271, USA
| | - Yu-Jin Kim
- Army Headquarters, Gyeryong-si, 32800, Republic of Korea
| | | | - Gustavo F Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA
| |
Collapse
|
14
|
Zhuge Y, Ding C, Gong X, Hu D, Zhu J, Wang C. Development and evaluation of two different double-antibody sandwich ELISAs for detecting severe fever with thrombocytopenia syndrome virus infection. Jpn J Infect Dis 2021; 75:49-55. [PMID: 34193660 DOI: 10.7883/yoken.jjid.2020.1109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly emerging tick-borne virus with a case fatality rate between 12% and 50%. Currently, effective vaccines or antiviral drugs are not available, and a diagnostic method for detecting SFTSV is urgently needed. The monoclonal (MAb) and polyclonal antibodies (PAb) against SFTSV were prepared by immunizing animals with SFTSV nucleocapsid protein (NP), and using both monoclonal and polyclonal antibodies as capture antibodies against NP, we developed two different double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) for detecting the NP of SFTSV. Both methods were applicable for the diagnosis of SFTSV-infected patients, as confirmed by quantitative polymerase chain reaction. Furthermore, the sensitivity and specificity of two assays for diagnosing SFTS were both 100%, and had no reaction to recombinant Dabieshan NP or recombinant Dengue virus NS1 subtype 1 and 2 proteins. In addition, two standard curves were established for quantitative detection of the NP, and the monoclonal antibody-based ELISA (MAb-based ELISA) test had a lower limit of detection than the polyclonal-based ELISA (PAb-based ELISA) test. Therefore, the MAb-based ELISA could be employed for detecting SFTSV in a convenient and effective way.
Collapse
Affiliation(s)
- Yaoyao Zhuge
- Huadong Medical Institute of Biotechniques, China
| | - Chenxi Ding
- Huadong Medical Institute of Biotechniques, China
| | - Xiufang Gong
- Huadong Medical Institute of Biotechniques, China
| | - Dan Hu
- Huadong Medical Institute of Biotechniques, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, China
| | | |
Collapse
|
15
|
Zhang N, Cheng XQ, Deng B, Rui J, Qiu L, Zhao Z, Lin S, Liu X, Xu J, Wang Y, Yang M, Zhu Y, Huang J, Liu C, Liu W, Luo L, Li Z, Li P, Yang T, Li ZF, Liang SY, Wang XC, Hu JL, Chen T. Modelling the transmission dynamics of severe fever with thrombocytopenia syndrome in Jiangsu Province, China. Parasit Vectors 2021; 14:237. [PMID: 33957950 PMCID: PMC8100741 DOI: 10.1186/s13071-021-04732-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that is regionally distributed in Asia, with high fatality. Constructing the transmission model of SFTS could help provide clues for disease control and fill the gap in research on SFTS models. METHODS We built an SFTS transmission dynamics model based on the susceptible-exposed-infectious-asymptomatic-recovered (SEIAR) model and the epidemiological characteristics of SFTS in Jiangsu Province. This model was used to evaluate the effect by cutting off different transmission routes and taking different interventions into account, to offer clues for disease prevention and control. RESULTS The transmission model fits the reported data well with a minimum R2 value of 0.29 and a maximum value of 0.80, P < 0.05. Meanwhile, cutting off the environmental transmission route had the greatest effect on the prevention and control of SFTS, while isolation and shortening the course of the disease did not have much effect. CONCLUSIONS The model we have built can be used to simulate the transmission of SFTS to help inform disease control. It is noteworthy that cutting off the environment-to-humans transmission route in the model had the greatest effect on SFTS prevention and control.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, 172, Jiangsu Rd, Nanjing, 210009, China
| | - Xiao-Qing Cheng
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, 172, Jiangsu Rd, Nanjing, 210009, China
| | - Bin Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Luxia Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zeyu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Shengnan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Xingchun Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Jingwen Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Yao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Meng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Yuanzhao Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Jiefeng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Chan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Weikang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Peihua Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Tianlong Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zhi-Feng Li
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, 172, Jiangsu Rd, Nanjing, 210009, China
| | - Shu-Yi Liang
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, 172, Jiangsu Rd, Nanjing, 210009, China
| | - Xiao-Chen Wang
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, 172, Jiangsu Rd, Nanjing, 210009, China
| | - Jian-Li Hu
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Centre for Disease Control and Prevention, 172, Jiangsu Rd, Nanjing, 210009, China.
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
16
|
Sharma D, Kamthania M. A new emerging pandemic of severe fever with thrombocytopenia syndrome (SFTS). Virusdisease 2021; 32:220-227. [PMID: 33942022 PMCID: PMC8082055 DOI: 10.1007/s13337-021-00656-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this study is to make aware every one of the deadliest diseases named severe fever with thrombocytopenia syndrome (SFTS). It has become the worldwide pandemic in recent few years. It is a kind of haemorrhagic fever, caused by SFTS virus (SFTSV), a novel phlebovirus of family Bunyaviridae. This syndrome is also a tick-borne zoonosis that means the virus transmitted from tick bite (having virus) into human body, i.e. infection spread from animals to humans and also transmitted from human to human. Epidemiological data of SFTS was collected to know the nature/symptoms of SFTSV. First case of this disease has been reported in China, followed by Japan, South korea, Taiwan, USA and many other countries. Vertebrates are the host of this disease and tick functions as a vector, where the virus can undergo brisk changes using gene mutation, homologous recombination and reassortments. The major symptoms of hemorrhagic fever are fever, thrombocytopenia, leucopenia and gastrointestinal abnormalities. Sometimes in very severe cases, full body organ failure may also take place and average death rate in humans is nearly 10 %. Old aged peoples are more prone to SFTSV infection. Apart from the fact of increasing SFTSV related health problems to humans, the pathogenesis of SFTS virus in human is not entirely understood and no treatment to this virus is still available. The simplest way to protect our self from this infection is to refrain from tick bite. Therefore, this disease has evolved to produce serious health issues to humans in various countries of world including china. This review discussing about causative agent, epidemiology, pathogenesis, diagnosis and treatment of SFTS. In order to control the spread of SFTSV, we have to stop the viral transmission or to protect the easily vulnerable population from tick bites, avoiding direct contact of infectious and also to use personal protective devices for SFTS patients. So, the weather conditions, mode of transmission and creation of new therapeutics like vaccines and drugs are the main areas of forthcoming research.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Life Sciences, IAMR College, Ghaziabad, Uttar Pradesh India
| | - Mohit Kamthania
- Department of Life Sciences, IAMR College, Ghaziabad, Uttar Pradesh India
| |
Collapse
|
17
|
Residual and Late Onset Symptoms Appeared in a Patient with Severe Fever with Thrombocytopenia in a Convalescence Stage. Viruses 2021; 13:v13040657. [PMID: 33920248 PMCID: PMC8069184 DOI: 10.3390/v13040657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by Dabie bandavirus (formerly SFTS virus, SFTSV). Its manifestations during the convalescent phase have not been widely described. We report a patient presenting with hematospermia, fatigue, myalgia, alopecia, insomnia, and depression during the recovery phase of SFTS. Since these symptoms are widely observed in patients with viral hemorrhagic fevers, there might be common mechanisms between SFTS and other viral hemorrhagic fevers. Close monitoring may be required during the recovery phase of SFTS.
Collapse
|
18
|
The Nonstructural Protein NSs of Severe Fever with Thrombocytopenia Syndrome Virus Causes a Cytokine Storm through the Hyperactivation of NF- κB. Mol Cell Biol 2021; 41:e0054220. [PMID: 33288641 PMCID: PMC8088271 DOI: 10.1128/mcb.00542-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging highly pathogenic phlebovirus. The syndrome is characterized by the substantial production of inflammatory cytokines and chemokines, described as a cytokine storm, which correlates with multiorgan failure and high mortality. SFSTV nonstructural (NSs) protein was suggested to mediate the pathogenesis by inhibiting antiviral interferon signaling in the host. However, whether SFTSV NSs protein mediates the induction of a fatal cytokine storm remains unaddressed. We demonstrated that SFTSV NSs promotes the hyperinduction of cytokine/chemokine genes in vitro, reminiscent of a cytokine storm. Using gene deletion and pharmacological intervention, we found that the induced cytokine storm is driven by the transcription factor NF-κB. Our investigation revealed that TANK-binding kinase 1 (TBK1) suppresses NF-κB signaling and cytokine/chemokine induction in a kinase activity-dependent manner and that NSs sequesters TBK1 to prevent it from suppressing NF-κB, thereby promoting the activation of NF-κB and its target cytokine/chemokine genes. Of note, NF-κB inhibition suppressed the induction of proinflammatory cytokines in SFTSV-infected type I interferon (IFN-I) receptor 1-deficient (Ifnar1-/-) mice. These findings establish the essential role of NSs in SFTS pathogenesis and suggest NF-κB as a possible therapeutic target.
Collapse
|
19
|
Kirino Y, Ishijima K, Miura M, Nomachi T, Mazimpaka E, Sudaryatma PE, Yamanaka A, Maeda K, Sugimoto T, Saito A, Mekata H, Okabayashi T. Seroprevalence of Severe Fever with Thrombocytopenia Syndrome Virus in Small-Animal Veterinarians and Nurses in the Japanese Prefecture with the Highest Case Load. Viruses 2021; 13:v13020229. [PMID: 33540629 PMCID: PMC7912989 DOI: 10.3390/v13020229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is the causative agent of SFTS, an emerging tick-borne disease in East Asia, and is maintained in enzootic cycles involving ticks and a range of wild animal hosts. Direct transmission of SFTSV from cats and dogs to humans has been identified in Japan, suggesting that veterinarians and veterinary nurses involved in small-animal practice are at occupational risk of SFTSV infection. To characterize this risk, we performed a sero-epidemiological survey in small-animal-practice workers and healthy blood donors in Miyazaki prefecture, which is the prefecture with the highest per capita number of recorded cases of SFTS in Japan. Three small-animal-practice workers were identified as seropositive by ELISA, but one had a negative neutralization-test result and so was finally determined to be seronegative, giving a seropositive rate of 2.2% (2 of 90), which was significantly higher than that in healthy blood donors (0%, 0 of 1000; p < 0.05). The seroprevalence identified here in small-animal-practice workers was slightly higher than that previously reported in other high-risk workers engaged in agriculture and forestry in Japan. Thus, enhancement of small-animal-practice workers’ awareness of biosafety at animal hospitals is necessary for control of SFTSV.
Collapse
Affiliation(s)
- Yumi Kirino
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan; (Y.K.); (A.S.); (H.M.)
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.I.); (K.M.)
| | - Miho Miura
- Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki 889-2155, Japan; (M.M.); (T.S.)
| | - Taro Nomachi
- Miyazaki Prefectural Miyakonojo Inspection Center, Miyazaki 885-0021, Japan;
| | - Eugene Mazimpaka
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan; (E.M.); (P.E.S.)
| | - Putu Eka Sudaryatma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan; (E.M.); (P.E.S.)
| | - Atsushi Yamanaka
- Department of Internal Medicine, Miyazaki Prefectural Miyazaki Hospital, Miyazaki 880-8510, Japan;
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.I.); (K.M.)
| | - Takayuki Sugimoto
- Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki 889-2155, Japan; (M.M.); (T.S.)
| | - Akatsuki Saito
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan; (Y.K.); (A.S.); (H.M.)
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan; (E.M.); (P.E.S.)
| | - Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan; (Y.K.); (A.S.); (H.M.)
| | - Tamaki Okabayashi
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan; (Y.K.); (A.S.); (H.M.)
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan; (E.M.); (P.E.S.)
- Correspondence: ; Tel./Fax: +81-985-58-7575
| |
Collapse
|
20
|
Wu Z, Han Y, Liu B, Li H, Zhu G, Latinne A, Dong J, Sun L, Su H, Liu L, Du J, Zhou S, Chen M, Kritiyakan A, Jittapalapong S, Chaisiri K, Buchy P, Duong V, Yang J, Jiang J, Xu X, Zhou H, Yang F, Irwin DM, Morand S, Daszak P, Wang J, Jin Q. Decoding the RNA viromes in rodent lungs provides new insight into the origin and evolutionary patterns of rodent-borne pathogens in Mainland Southeast Asia. MICROBIOME 2021; 9:18. [PMID: 33478588 PMCID: PMC7818139 DOI: 10.1186/s40168-020-00965-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/06/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND As the largest group of mammalian species, which are also widely distributed all over the world, rodents are the natural reservoirs for many diverse zoonotic viruses. A comprehensive understanding of the core virome of diverse rodents should therefore assist in efforts to reduce the risk of future emergence or re-emergence of rodent-borne zoonotic pathogens. RESULTS This study aimed to describe the viral range that could be detected in the lungs of rodents from Mainland Southeast Asia. Lung samples were collected from 3284 rodents and insectivores of the orders Rodentia, Scandentia, and Eulipotyphla in eighteen provinces of Thailand, Lao PDR, and Cambodia throughout 2006-2018. Meta-transcriptomic analysis was used to outline the unique spectral characteristics of the mammalian viruses within these lungs and the ecological and genetic imprints of the novel viruses. Many mammalian- or arthropod-related viruses from distinct evolutionary lineages were reported for the first time in these species, and viruses related to known pathogens were characterized for their genomic and evolutionary characteristics, host species, and locations. CONCLUSIONS These results expand our understanding of the core viromes of rodents and insectivores from Mainland Southeast Asia and suggest that a high diversity of viruses remains to be found in rodent species of this area. These findings, combined with our previous virome data from China, increase our knowledge of the viral community in wildlife and arthropod vectors in emerging disease hotspots of East and Southeast Asia. Video abstract.
Collapse
Affiliation(s)
- Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | | - Alice Latinne
- EcoHealth Alliance, New York, NY, USA
- Wildlife Conservation Society, Viet Nam Country Program, Ha Noi, Vietnam
- Wildlife Conservation Society, Health Program, Bronx, NY, USA
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Lilin Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Haoxiang Su
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jiang Du
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Mingxing Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Anamika Kritiyakan
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | | | | | | - Veasna Duong
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jinyong Jiang
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Xiang Xu
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Hongning Zhou
- Yunnan Institute of Parasitic Diseases, Pu'er, PR China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Serge Morand
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | | | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
21
|
Kawaguchi T, Umekita K, Yamanaka A, Hara S, Yamaguchi T, Inoue E, Okayama A. Impact of C-Reactive Protein Levels on Differentiating of Severe Fever With Thrombocytopenia Syndrome From Japanese Spotted Fever. Open Forum Infect Dis 2020; 7:ofaa473. [PMID: 33204759 PMCID: PMC7651123 DOI: 10.1093/ofid/ofaa473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral hemorrhagic fever in China, Korea, and Japan. Japanese spotted fever (JSF), which belongs to spotted fever group rickettsioses, is also endemic to Western Japan. Patients with SFTS and those with JSF display many of the same clinical manifestations. Sudden fever, rash, tick bite, and neurological and gastrointestinal symptoms may be seen in both infections, but the frequency and severity of each disease have not been compared and studied. Because laboratory confirmation of pathogens takes time, it is important to predict diagnosis of SFTS vs JSF based on the features of the clinical characteristics at the initial presentation, particularly in primary care settings. Methods We conducted a case series review at 4 medical facilities in Miyazaki, Japan. Based on the medical records, clinical and laboratory characteristics were compared between patients with SFTS and those with JSF. Results Eighty-one patients were enrolled in this study, including 41 with SFTS and 40 with JSF. The absence of rash (P < .001), leukopenia (P < .001), and normal C-reactive protein (CRP) levels (P < .001) were the variables distinguishing SFTS from JSF. Normal CRP levels (≤1.0 mg/dL) had a 95% sensitivity (84%–99%) and 97% specificity (87%–100%) for SFTS, with a positive likelihood ratio of 37.1 (5.35–257). Conclusions Normal serum CRP levels were shown to differentiate SFTS from JSF with a very high probability.
Collapse
Affiliation(s)
- Takeshi Kawaguchi
- Department of Rheumatology, Infectious Diseases, and Laboratory Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kunihiko Umekita
- Department of Rheumatology, Infectious Diseases, and Laboratory Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamanaka
- Department of Internal Medicine, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan
| | - Seiichiro Hara
- Department of Internal Medicine, Miyazaki Prefectural Nichinan Hospital, Miyazaki, Japan
| | - Tetsuro Yamaguchi
- Department of Internal Medicine, Miyazaki Prefectural Nobeoka Hospital, Miyazaki, Japan
| | - Eisuke Inoue
- Showa University Research Administration Center, Showa University, Tokyo, Japan
| | - Akihiko Okayama
- Department of Rheumatology, Infectious Diseases, and Laboratory Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
22
|
Diaz JH. Emerging Tickborne Viral Infections: What Wilderness Medicine Providers Need to Know. Wilderness Environ Med 2020; 31:489-497. [PMID: 32891500 DOI: 10.1016/j.wem.2020.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 11/30/2022]
Abstract
Ticks are versatile vectors of infectious diseases and transmit a broad range of pathogens, including bacteria, viruses, and parasites. Ticks harbor pathogens without infection and share pathogens with other ticks while feeding together on a host. The primary objective of this review is to identify tickborne viral pathogens in the United States, focusing on emerging pathogens. Additional objectives include describing the epidemiology of tick-transmitted viruses, identifying the most common tick vectors of viral pathogens in the United States, identifying the most common tick-transmitted viruses worldwide, and recommending effective strategies for the prevention and treatment of tickborne viral infections. Flaviviruses transmitted by ixodid ticks cause most tickborne viral infections that present clinically as either encephalitis or hemorrhagic fever. Recently, several new tickborne viruses have emerged in the United States, including Bourbon virus, Heartland virus, Powassan virus, and the severe fever with thrombocytopenia syndrome virus transmitted by a tick recently introduced from China, the Asian long-horned tick (Haemaphysalis longicornis). In most cases, there are no specific drug therapies for tickborne viral infections, and treatment is supportive. Vaccination, personal protection, landscape management, and wildlife management are all effective strategies for the primary prevention and control of tickborne viral infectious diseases.
Collapse
Affiliation(s)
- James H Diaz
- Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
23
|
Perez-Sautu U, Gu SH, Caviness K, Song DH, Kim YJ, Paola ND, Lee D, Klein TA, Chitty JA, Nagle E, Kim HC, Chong ST, Beitzel B, Reyes DS, Finch C, Byrum R, Cooper K, Liang J, Kuhn JH, Zeng X, Kuehl KA, Coffin KM, Liu J, Oh HS, Seog W, Choi BS, Sanchez-Lockhart M, Palacios G, Jeong ST. A Model for the Production of Regulatory Grade Viral Hemorrhagic Fever Exposure Stocks: From Field Surveillance to Advanced Characterization of SFTSV. Viruses 2020; 12:v12090958. [PMID: 32872451 PMCID: PMC7552075 DOI: 10.3390/v12090958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging human pathogen, endemic in areas of China, Japan, and the Korea (KOR). It is primarily transmitted through infected ticks and can cause a severe hemorrhagic fever disease with case fatality rates as high as 30%. Despite its high virulence and increasing prevalence, molecular and functional studies in situ are scarce due to the limited availability of high-titer SFTSV exposure stocks. During the course of field virologic surveillance in 2017, we detected SFTSV in ticks and in a symptomatic soldier in a KOR Army training area. SFTSV was isolated from the ticks producing a high-titer viral exposure stock. Through the use of advanced genomic tools, we present here a complete, in-depth characterization of this viral stock, including a comparison with both the virus in its arthropod source and in the human case, and an in vivo study of its pathogenicity. Thanks to this detailed characterization, this SFTSV viral exposure stock constitutes a quality biological tool for the study of this viral agent and for the development of medical countermeasures, fulfilling the requirements of the main regulatory agencies.
Collapse
Affiliation(s)
- Unai Perez-Sautu
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (U.P.-S.); (K.C.); (N.D.P.); (J.A.C.); (E.N.); (B.B.); (D.S.R.)
| | - Se Hun Gu
- The 4th Research & Development Institute, Agency for Defense Development (ADD), Daejeon 34186, Korea; (S.H.G.); (D.H.S.); (D.L.)
| | - Katie Caviness
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (U.P.-S.); (K.C.); (N.D.P.); (J.A.C.); (E.N.); (B.B.); (D.S.R.)
| | - Dong Hyun Song
- The 4th Research & Development Institute, Agency for Defense Development (ADD), Daejeon 34186, Korea; (S.H.G.); (D.H.S.); (D.L.)
| | - Yu-Jin Kim
- Army Headquarters, Gyeryong-si 32800, Korea; (Y.-J.K.); (B.-S.C.)
| | - Nicholas Di Paola
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (U.P.-S.); (K.C.); (N.D.P.); (J.A.C.); (E.N.); (B.B.); (D.S.R.)
| | - Daesang Lee
- The 4th Research & Development Institute, Agency for Defense Development (ADD), Daejeon 34186, Korea; (S.H.G.); (D.H.S.); (D.L.)
| | - Terry A. Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281, APO AP 96271, USA; (T.A.K.); (H.-C.K.); (S.-T.C.)
| | - Joseph A. Chitty
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (U.P.-S.); (K.C.); (N.D.P.); (J.A.C.); (E.N.); (B.B.); (D.S.R.)
| | - Elyse Nagle
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (U.P.-S.); (K.C.); (N.D.P.); (J.A.C.); (E.N.); (B.B.); (D.S.R.)
| | - Heung-Chul Kim
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281, APO AP 96271, USA; (T.A.K.); (H.-C.K.); (S.-T.C.)
| | - Sung-Tae Chong
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281, APO AP 96271, USA; (T.A.K.); (H.-C.K.); (S.-T.C.)
| | - Brett Beitzel
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (U.P.-S.); (K.C.); (N.D.P.); (J.A.C.); (E.N.); (B.B.); (D.S.R.)
| | - Daniel S. Reyes
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (U.P.-S.); (K.C.); (N.D.P.); (J.A.C.); (E.N.); (B.B.); (D.S.R.)
| | - Courtney Finch
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA; (C.F.); (R.B.); (K.C.); (J.L.); (J.H.K.)
| | - Russ Byrum
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA; (C.F.); (R.B.); (K.C.); (J.L.); (J.H.K.)
| | - Kurt Cooper
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA; (C.F.); (R.B.); (K.C.); (J.L.); (J.H.K.)
| | - Janie Liang
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA; (C.F.); (R.B.); (K.C.); (J.L.); (J.H.K.)
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA; (C.F.); (R.B.); (K.C.); (J.L.); (J.H.K.)
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (X.Z.); (K.A.K.); (K.M.C.); (J.L.)
| | - Kathleen A. Kuehl
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (X.Z.); (K.A.K.); (K.M.C.); (J.L.)
| | - Kayla M. Coffin
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (X.Z.); (K.A.K.); (K.M.C.); (J.L.)
| | - Jun Liu
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (X.Z.); (K.A.K.); (K.M.C.); (J.L.)
| | - Hong Sang Oh
- Armed Forces Medical Command, Seongnam-si 13590, Korea; (H.S.O.); (W.S.)
| | - Woong Seog
- Armed Forces Medical Command, Seongnam-si 13590, Korea; (H.S.O.); (W.S.)
| | - Byung-Sub Choi
- Army Headquarters, Gyeryong-si 32800, Korea; (Y.-J.K.); (B.-S.C.)
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (U.P.-S.); (K.C.); (N.D.P.); (J.A.C.); (E.N.); (B.B.); (D.S.R.)
- Department of Pathology & Microbiology, University of Nebraska Medical Centre, Omaha, NE 68198, USA
- Correspondence: (M.S.-L.); (G.P.); (S.T.J.)
| | - Gustavo Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (U.P.-S.); (K.C.); (N.D.P.); (J.A.C.); (E.N.); (B.B.); (D.S.R.)
- Correspondence: (M.S.-L.); (G.P.); (S.T.J.)
| | - Seong Tae Jeong
- The 4th Research & Development Institute, Agency for Defense Development (ADD), Daejeon 34186, Korea; (S.H.G.); (D.H.S.); (D.L.)
- Correspondence: (M.S.-L.); (G.P.); (S.T.J.)
| |
Collapse
|
24
|
Blitvich BJ, Magalhaes T, Laredo-Tiscareño SV, Foy BD. Sexual Transmission of Arboviruses: A Systematic Review. Viruses 2020; 12:v12090933. [PMID: 32854298 PMCID: PMC7552039 DOI: 10.3390/v12090933] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are primarily maintained in nature in transmission cycles between hematophagous arthropods and vertebrate hosts, but an increasing number of arboviruses have been isolated from or indirectly detected in the urogenital tract and sexual secretions of their vertebrate hosts, indicating that further investigation on the possibility of sexual transmission of these viruses is warranted. The most widely recognized sexually-transmitted arbovirus is Zika virus but other arboviruses, including Crimean-Congo hemorrhagic fever virus and dengue virus, might also be transmitted, albeit occasionally, by this route. This review summarizes our current understanding on the ability of arboviruses to be sexually transmitted. We discuss the sexual transmission of arboviruses between humans and between vertebrate animals, but not arthropod vectors. Every taxonomic group known to contain arboviruses (Asfarviridae, Bunyavirales, Flaviviridae, Orthomyxoviridae, Reoviridae, Rhabdoviridae and Togaviridae) is covered.
Collapse
Affiliation(s)
- Bradley J. Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
- Correspondence: ; Tel.: +1-515-294-9861; Fax: +1-515-294-8500
| | - Tereza Magalhaes
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.M.); (B.D.F.)
| | - S. Viridiana Laredo-Tiscareño
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Brian D. Foy
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.M.); (B.D.F.)
| |
Collapse
|
25
|
Abstract
RNA-activated protein kinase (PKR) is one of the most powerful antiviral defense factors of the mammalian host. PKR acts by phosphorylating mRNA translation initiation factor eIF2α, thereby converting it from a cofactor to an inhibitor of mRNA translation that strongly binds to initiation factor eIF2B. To sustain synthesis of their proteins, viruses are known to counteract this on the level of PKR or eIF2α or by circumventing initiation factor-dependent translation altogether. Here, we report a different PKR escape strategy executed by sandfly fever Sicilian virus (SFSV), a member of the increasingly important group of phleboviruses. We found that the nonstructural protein NSs of SFSV binds to eIF2B and protects it from inactivation by PKR-generated phospho-eIF2α. Protein synthesis is hence maintained and the virus can replicate despite ongoing full-fledged PKR signaling in the infected cells. Thus, SFSV has evolved a unique strategy to escape the powerful antiviral PKR. RNA-activated protein kinase (PKR) is a major innate immune factor that senses viral double-stranded RNA (dsRNA) and phosphorylates eukaryotic initiation factor (eIF) 2α. Phosphorylation of the α subunit converts the eIF2αβγ complex into a stoichiometric inhibitor of eukaryotic initiation factor eIF2B, thus halting mRNA translation. To escape this protein synthesis shutoff, viruses have evolved countermechanisms such as dsRNA sequestration, eIF-independent translation by an internal ribosome binding site, degradation of PKR, or dephosphorylation of PKR or of phospho-eIF2α. Here, we report that sandfly fever Sicilian phlebovirus (SFSV) confers such a resistance without interfering with PKR activation or eIF2α phosphorylation. Rather, SFSV expresses a nonstructural protein termed NSs that strongly binds to eIF2B. Although NSs still allows phospho-eIF2α binding to eIF2B, protein synthesis and virus replication are unhindered. Hence, SFSV encodes a unique PKR antagonist that acts by rendering eIF2B resistant to the inhibitory action of bound phospho-eIF2α.
Collapse
|
26
|
Seo JH, Jeon BY, Monoldorova S, Lee IY. Seasonal Prevalence of Ticks at Bukhansan Dullegil and Detection of Severe Fever with Thrombocytopenia Syndrome Virus. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2020. [DOI: 10.15324/kjcls.2020.52.2.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jang-Hoon Seo
- Department of Biomedical Laboratory Science, Shinhan University, Uijeongbu, Korea
| | - Bo-Young Jeon
- Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, Wonju, Korea
| | - Sezim Monoldorova
- Department of Biomedical Laboratory Science, College of Health Science, Yonsei University, Wonju, Korea
| | - In-Yong Lee
- Institute of Tropical Medicine, College of Medicine, Yonsei University, Seoul, Korea
| |
Collapse
|
27
|
Jones R, Lessoued S, Meier K, Devignot S, Barata-García S, Mate M, Bragagnolo G, Weber F, Rosenthal M, Reguera J. Structure and function of the Toscana virus cap-snatching endonuclease. Nucleic Acids Res 2020; 47:10914-10930. [PMID: 31584100 PMCID: PMC6847833 DOI: 10.1093/nar/gkz838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/14/2019] [Accepted: 10/01/2019] [Indexed: 12/03/2022] Open
Abstract
Toscana virus (TOSV) is an arthropod-borne human pathogen responsible for seasonal outbreaks of fever and meningoencephalitis in the Mediterranean basin. TOSV is a segmented negative-strand RNA virus (sNSV) that belongs to the genus phlebovirus (family Phenuiviridae, order Bunyavirales), encompassing other important human pathogens such as Rift Valley fever virus (RVFV). Here, we carried out a structural and functional characterization of the TOSV cap-snatching endonuclease, an N terminal domain of the viral polymerase (L protein) that provides capped 3′OH primers for transcription. We report TOSV endonuclease crystal structures in the apo form, in complex with a di-ketoacid inhibitor (DPBA) and in an intermediate state of inhibitor release, showing details on substrate binding and active site dynamics. The structure reveals substantial folding rearrangements absent in previously reported cap-snatching endonucleases. These include the relocation of the N terminus and the appearance of new structural motifs important for transcription and replication. The enzyme shows high activity rates comparable to other His+ cap-snatching endonucleases. Moreover, the activity is dependent on conserved residues involved in metal ion and substrate binding. Altogether, these results bring new light on the structure and function of cap-snatching endonucleases and pave the way for the development of specific and broad-spectrum antivirals.
Collapse
Affiliation(s)
- Rhian Jones
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Sana Lessoued
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Kristina Meier
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, D-20359 Hamburg, Germany
| | - Stéphanie Devignot
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
| | | | - Maria Mate
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | | | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
| | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, D-20359 Hamburg, Germany
| | - Juan Reguera
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France.,INSERM, AFMB UMR7257,13288 Marseille, France
| |
Collapse
|
28
|
Vaccination with single plasmid DNA encoding IL-12 and antigens of severe fever with thrombocytopenia syndrome virus elicits complete protection in IFNAR knockout mice. PLoS Negl Trop Dis 2020; 14:e0007813. [PMID: 32196487 PMCID: PMC7112229 DOI: 10.1371/journal.pntd.0007813] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/01/2020] [Accepted: 02/07/2020] [Indexed: 02/01/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by SFTS virus (SFTSV) infection. Despite a gradual increase of SFTS cases and high mortality in endemic regions, no specific viral therapy nor vaccine is available. Here, we developed a single recombinant plasmid DNA encoding SFTSV genes, Gn and Gc together with NP-NS fusion antigen, as a vaccine candidate. The viral antigens were fused with Fms-like tyrosine kinase-3 ligand (Flt3L) and IL-12 gene was incorporated into the plasmid to enhance cell-mediated immunity. Vaccination with the DNA provides complete protection of IFNAR KO mice upon lethal SFTSV challenge, whereas immunization with a plasmid without IL-12 gene resulted in partial protection. Since we failed to detect antibodies against surface glycoproteins, Gn and Gc, in the immunized mice, antigen-specific cellular immunity, as confirmed by enhanced antigen-specific T cell responses, might play major role in protection. Finally, we evaluated the degree of protective immunity provided by protein immunization of the individual glycoprotein, Gn or Gc. Although both protein antigens induced a significant level of neutralizing activity against SFTSV, Gn vaccination resulted in relatively higher neutralizing activity and better protection than Gc vaccination. However, both antigens failed to provide complete protection. Given that DNA vaccines have failed to induce sufficient immunogenicity in human trials when compared to protein vaccines, optimal combinations of DNA and protein elements, proper selection of target antigens, and incorporation of efficient adjuvant, need to be further investigated for SFTSV vaccine development. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infection endemic to East Asia including China, Korea, and Japan. Gradual rise of disease incidence and relatively high mortality have become a serious public health problem in the endemic countries. In this study, we developed a recombinant plasmid DNA encoding four antigens, Gn, Gc, NP, and NS, of SFTS virus (SFTSV) as a vaccine candidate. In order to enhance cell-mediated immunity, the viral antigens were fused with Flt3L and IL-12 gene was incorporated into the plasmid. Immunization with the DNA vaccine provides complete protection against lethal SFTSV infection in IFNAR KO mice. Antigen-specific T cell responses might play a major role in the protection since we observed enhanced T cell responses specific to the viral antigens but failed to detect neutralizing antibody in the immunized mice. When we immunized with either viral glycoprotein, Gn protein induced relatively higher neutralizing activity and better protection against SFTSV infection than Gc antigen, but neither generated complete protection. Therefore, an optimal combination of DNA and protein elements, as well as proper selection of target antigens, might be required to produce an effective SFTSV vaccine.
Collapse
|
29
|
Temmam S, Bigot T, Chrétien D, Gondard M, Pérot P, Pommelet V, Dufour E, Petres S, Devillers E, Hoem T, Pinarello V, Hul V, Vongphayloth K, Hertz JC, Loiseau I, Dumarest M, Duong V, Vayssier-Taussat M, Grandadam M, Albina E, Dussart P, Moutailler S, Cappelle J, Brey PT, Eloit M. Insights into the Host Range, Genetic Diversity, and Geographical Distribution of Jingmenviruses. mSphere 2019; 4:e00645-19. [PMID: 31694898 PMCID: PMC6835211 DOI: 10.1128/msphere.00645-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
Jingmenvirus is a recently identified group of segmented RNA viruses phylogenetically linked with unsegmented Flaviviridae viruses. Primarily identified in various tick genera originating in China, Jingmenvirus geographical distribution has rapidly expanded to cover Africa, South America, Caribbean, and Europe. The identification of Jingmen-related viruses in various mammals, including febrile humans, opens the possibility that Jingmenviruses may be novel tick-borne arboviruses. In this study, we aimed at increasing knowledge of the host range, genetic diversity, and geographical distribution of Jingmenviruses by reporting for the first time the identification of Jingmenviruses associated with Rhipicephalus microplus ticks originating in the French Antilles (Guadeloupe and Martinique islands), with Amblyomma testudinarium ticks in Lao PDR, and with Ixodes ricinus ticks in metropolitan France, and from urine of Pteropus lylei bats in Cambodia. Analyses of the relationships between the different Jingmenvirus genomes resulted in the identification of three main phylogenic subclades, each of them containing both tick-borne and mammal-borne strains, reinforcing the idea that Jingmenviruses may be considered as tick-borne arboviruses. Finally, we estimated the prevalence of Jingmenvirus-like infection using luciferase immunoprecipitation assay screening (LIPS) of asymptomatic humans and cattle highly exposed to tick bites. Among 70 French human, 153 Laotian human, and 200 Caribbean cattle sera tested, only one French human serum was found (slightly) positive, suggesting that the prevalence of Jingmenvirus human and cattle infections in these areas is probably low.IMPORTANCE Several arboviruses emerging as new pathogens for humans and domestic animals have recently raised public health concern and increased interest in the study of their host range and in detection of spillover events. Recently, a new group of segmented Flaviviridae-related viruses, the Jingmenviruses, has been identified worldwide in many invertebrate and vertebrate hosts, pointing out the issue of whether they belong to the arbovirus group. The study presented here combined whole-genome sequencing of three tick-borne Jingmenviruses and one bat-borne Jingmenvirus with comprehensive phylogenetic analyses and high-throughput serological screening of human and cattle populations exposed to these viruses to contribute to the knowledge of Jingmenvirus host range, geographical distribution, and mammalian exposure.
Collapse
Affiliation(s)
- Sarah Temmam
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Thomas Bigot
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Institut Pasteur-Bioinformatics and Biostatistics Hub-Computational Biology Department, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - Delphine Chrétien
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Mathilde Gondard
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Philippe Pérot
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Virginie Pommelet
- Institut Pasteur du Laos, Vientiane, Lao People's Democratic Republic
| | - Evelyne Dufour
- Institut Pasteur, Production and Purification of Recombinant Proteins Technological Platform-C2RT, Institut Pasteur, Paris, France
| | - Stéphane Petres
- Institut Pasteur, Production and Purification of Recombinant Proteins Technological Platform-C2RT, Institut Pasteur, Paris, France
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Thavry Hoem
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Valérie Pinarello
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
| | - Vibol Hul
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | | | | | - Irène Loiseau
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Marine Dumarest
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Muriel Vayssier-Taussat
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Marc Grandadam
- Institut Pasteur du Laos, Vientiane, Lao People's Democratic Republic
| | - Emmanuel Albina
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Julien Cappelle
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- UMR EpiA, INRA, VetAgro Sup, Marcy l'Etoile, France
| | - Paul T Brey
- Institut Pasteur du Laos, Vientiane, Lao People's Democratic Republic
| | - Marc Eloit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, France
| |
Collapse
|
30
|
Temmam S, Chrétien D, Bigot T, Dufour E, Petres S, Desquesnes M, Devillers E, Dumarest M, Yousfi L, Jittapalapong S, Karnchanabanthoeng A, Chaisiri K, Gagnieur L, Cosson JF, Vayssier-Taussat M, Morand S, Moutailler S, Eloit M. Monitoring Silent Spillovers Before Emergence: A Pilot Study at the Tick/Human Interface in Thailand. Front Microbiol 2019; 10:2315. [PMID: 31681195 PMCID: PMC6812269 DOI: 10.3389/fmicb.2019.02315] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/23/2019] [Indexed: 01/16/2023] Open
Abstract
Emerging zoonoses caused by previously unknown agents are one of the most important challenges for human health because of their inherent inability to be predictable, conversely to emergences caused by previously known agents that could be targeted by routine surveillance programs. Emerging zoonotic infections either originate from increasing contacts between wildlife and human populations, or from the geographical expansion of hematophagous arthropods that act as vectors, this latter being more capable to impact large-scale human populations. While characterizing the viral communities from candidate vectors in high-risk geographical areas is a necessary initial step, the need to identify which viruses are able to spill over and those restricted to their hosts has recently emerged. We hypothesized that currently unknown tick-borne arboviruses could silently circulate in specific biotopes where mammals are highly exposed to tick bites, and implemented a strategy that combined high-throughput sequencing with broad-range serological techniques to both identify novel arboviruses and tick-specific viruses in a ticks/mammals interface in Thailand. The virome of Thai ticks belonging to the Rhipicephalus, Amblyomma, Dermacentor, Hyalomma, and Haemaphysalis genera identified numerous viruses, among which several viruses could be candidates for future emergence as regards to their phylogenetic relatedness with known tick-borne arboviruses. Luciferase immunoprecipitation system targeting external viral proteins of viruses identified among the Orthomyxoviridae, Phenuiviridae, Flaviviridae, Rhabdoviridae, and Chuviridae families was used to screen human and cattle Thai populations highly exposed to tick bites. Although no positive serum was detected for any of the six viruses selected, suggesting that these viruses are not infecting these vertebrates, or at very low prevalence (upper estimate 0.017% and 0.047% in humans and cattle, respectively), the virome of Thai ticks presents an extremely rich viral diversity, among which novel tick-borne arboviruses are probably hidden and could pose a public health concern if they emerge. The strategy developed in this pilot study, starting from the inventory of viral communities of hematophagous arthropods to end by the identification of viruses able (or likely unable) to infect vertebrates, is the first step in the prediction of putative new emergences and could easily be transposed to other reservoirs/vectors/susceptible hosts interfaces.
Collapse
Affiliation(s)
- Sarah Temmam
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
| | - Delphine Chrétien
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
| | - Thomas Bigot
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
- Institut Pasteur – Bioinformatics and Biostatistics Hub – Computational Biology Department, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Evelyne Dufour
- Institut Pasteur, Production and Purification of Recombinant Proteins Technological Platform – C2RT, Paris, France
| | - Stéphane Petres
- Institut Pasteur, Production and Purification of Recombinant Proteins Technological Platform – C2RT, Paris, France
| | - Marc Desquesnes
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR InterTryp, Bangkok, Thailand
- InterTryp, Institut de Recherche pour le Développement (IRD), CIRAD, University of Montpellier, Montpellier, France
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Marine Dumarest
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
| | - Léna Yousfi
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | | | | | - Léa Gagnieur
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
| | - Jean-François Cosson
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Muriel Vayssier-Taussat
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Serge Morand
- Institut des Sciences de l'Evolution, CNRS, CC065, Université Montpellier, Montpellier, France
- CIRAD ASTRE, Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Marc Eloit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Paris, France
- National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, France
| |
Collapse
|
31
|
Novel Tick Phlebovirus Genotypes Lacking Evidence for Vertebrate Infections in Anatolia and Thrace, Turkey. Viruses 2019; 11:v11080703. [PMID: 31374842 PMCID: PMC6723390 DOI: 10.3390/v11080703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 01/23/2023] Open
Abstract
We screened ticks and human clinical specimens to detect and characterize tick phleboviruses and pathogenicity in vertebrates. Ticks were collected at locations in Istanbul (Northwest Anatolia, Thrace), Edirne, Kırklareli, and Tekirdağ (Thrace), Mersin (Mediterranean Anatolia), Adiyaman and Şanlıurfa (Southeastern Anatolia) provinces from 2013-2018 and were analyzed following morphological identification and pooling. Specimens from individuals with febrile disease or meningoencephalitic symptoms of an unknown etiology were also evaluated. The pools were screened via generic tick phlebovirus amplification assays and products were sequenced. Selected pools were used for cell culture and suckling mice inoculations and next generation sequencing (NGS). A total of 7492 ticks were screened in 609 pools where 4.2% were positive. A phylogenetic sequence clustering according to tick species was observed. No human samples were positive. NGS provided near-complete viral replicase coding sequences in three pools. A comprehensive analysis revealed three distinct, monophyletic virus genotypes, comprised of previously-described viruses from Anatolia and the Balkans, with unique fingerprints in conserved amino acid motifs in viral replicase. A novel tick phlebovirus group was discovered circulating in the Balkans and Turkey, with at least three genotypes or species. No evidence for replication in vertebrates or infections in clinical cases could be demonstrated.
Collapse
|
32
|
Ning YJ, Mo Q, Feng K, Min YQ, Li M, Hou D, Peng C, Zheng X, Deng F, Hu Z, Wang H. Interferon-γ-Directed Inhibition of a Novel High-Pathogenic Phlebovirus and Viral Antagonism of the Antiviral Signaling by Targeting STAT1. Front Immunol 2019; 10:1182. [PMID: 31191546 PMCID: PMC6546826 DOI: 10.3389/fimmu.2019.01182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening infectious disease caused by a novel phlebovirus, SFTS virus (SFTSV). Currently, there is no vaccine or antiviral available and the viral pathogenesis remains largely unknown. In this study, we demonstrated that SFTSV infection results in substantial production of serum interferon-γ (IFN-γ) in patients and then that IFN-γ in turn exhibits a robust anti-SFTSV activity in cultured cells, indicating the potential role of IFN-γ in anti-SFTSV immune responses. However, the IFN-γ anti-SFTSV efficacy was compromised once viral infection had been established. Consistently, we found that viral nonstructural protein (NSs) expression counteracts IFN-γ signaling. By protein interaction analyses combined with mass spectrometry, we identified the transcription factor of IFN-γ signaling pathway, STAT1, as the cellular target of SFTSV for IFN-γ antagonism. Mechanistically, SFTSV blocks IFN-γ-triggered STAT1 action through (1) NSs-STAT1 interaction-mediated sequestration of STAT1 into viral inclusion bodies and (2) viral infection-induced downregulation of STAT1 protein level. Finally, the efficacy of IFN-γ as an anti-SFTSV drug in vivo was evaluated in a mouse infection model: IFN-γ pretreatment but not posttreatment conferred significant protection to mice against lethal SFTSV infection, confirming IFN-γ's anti-SFTSV effect and viral antagonism against IFN-γ after the infection establishment. These findings present a picture of virus-host arm race and may promote not only the understanding of virus-host interactions and viral pathogenesis but also the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiong Mo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kuan Feng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qin Min
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mingyue Li
- Department of Infectious Diseases, Union Hospital, Institute of Infection and Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dianhai Hou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Cheng Peng
- Department of Infectious Diseases, Union Hospital, Institute of Infection and Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Institute of Infection and Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
33
|
Hu J, Li Z, Cai J, Liu D, Zhang X, Jiang R, Guo X, Liu D, Zhang Y, Cui L, Shen J, Zhu F, Bao C. A Cluster of Bunyavirus-Associated Severe Fever With Thrombocytopenia Syndrome Cases in a Coastal Plain Area in China, 2015: Identification of a Previously Unidentified Endemic Region for Severe Fever With Thrombocytopenia Bunyavirus. Open Forum Infect Dis 2019; 6:ofz209. [PMID: 31211156 PMCID: PMC6559278 DOI: 10.1093/ofid/ofz209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/03/2019] [Indexed: 11/13/2022] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is a typical tick-borne, natural focal disease. The natural foci of SFTS were considered to exist in hilly and mountainous areas before 2015. A cluster of 3 patients exposed to a patient with a fulminant disease consistent with SFTS occurred from July to August 2015 in Dongtai County, which is characterized by alluvial plains; this prompted investigation. Methods The epidemiological, clinical, and laboratory features of 4 patients in the cluster were analyzed. Serum samples from the indigenous healthy population and native domesticated animals were collected to conduct laboratory tests, along with small wild animals and ticks. Results In 3 secondary case patients, high fever, thrombocytopenia and leukopenia developed within 8-13 days after contact with blood or bloody secretions from the index patient; SFTS was then diagnosed by means of reverse-transcription polymerase chain reaction. Genomic sequencing and analysis of S and L segments of 2 viral strains isolated from 2 secondary case patients showed that they shared 99.8%-99.9% homology in nucleotide sequence. The seroprevalences among indigenous healthy population, native livestock, native poultry, and small wild animals was 0.74%, 17.54%, 6.67%, and 1.12%, respectively. Three questing ticks, 61 feeding ticks, and 178 small wild animals were collected in August 2015. Survey on tick density and seasonal fluctuation in 2016 showed that ticks were active from March to October. All ticks were identified as Haemaphysalis longicornis. Severe fever with thrombocytopenia bunyavirus (SFTSV)-specific RNA was detected in the ticks collected in 2016, and the minimum SFTSV infection rate in these ticks was 0.54% (1 of 185).Wild mammals and ticks collected in August 2015 tested negative for SFTSV-specific RNA. Conclusions Aside from hilly or mountainous area, a coastal plain was identified as the natural foci of SFTSV in Dongtai County, China. The involvement of migration in the evolution of SFTSV might lead to a transregional transmission event of SFTSV.
Collapse
Affiliation(s)
- Jianli Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Zhifeng Li
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Jiaping Cai
- Dongtai County Center for Disease Control and Prevention
| | - Donglin Liu
- Dongtai County Center for Disease Control and Prevention
| | - Xuefeng Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Renjie Jiang
- Yancheng Municipal Center for Disease Control and Prevention, Dongtai, China
| | - Xilin Guo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Dapeng Liu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Yufu Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Lunbiao Cui
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Jinjin Shen
- Yancheng Municipal Center for Disease Control and Prevention, Dongtai, China
| | - Fengcai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| | - Changjun Bao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing
| |
Collapse
|
34
|
Yoo JR, Choi JH, Kim YR, Lee KH, Heo ST. Occupational Risk of Severe Fever With Thrombocytopenia Syndrome in Healthcare Workers. Open Forum Infect Dis 2019; 6:ofz210. [PMID: 31139678 PMCID: PMC6527088 DOI: 10.1093/ofid/ofz210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022] Open
Abstract
We identified a healthcare-associated infection of severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV), transmitted through direct blood contact with an index case. Following further epidemiological and clinical investigations, we identified SFTSV seropositivity in 2 healthcare workers and 2 family members, who were positive for anti-SFTSV immunoglobin G. It is important to prevent SFTSV transmission by early diagnosis of SFTS and universal precautions.
Collapse
Affiliation(s)
- Jeong Rae Yoo
- Department of Internal Medicine, Jeju National University Hospital, Jeju, Republic of Korea
| | - Jae Hong Choi
- Department of Pediatrics, Jeju National University Hospital, Jeju, Republic of Korea
| | - Young Ree Kim
- Department of Laboratory Medicine, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Keun Hwa Lee
- Department of Microbiology and Immunology, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Sang Taek Heo
- Department of Internal Medicine, Jeju National University Hospital, Jeju, Republic of Korea
| |
Collapse
|
35
|
Rochlin I. Modeling the Asian Longhorned Tick (Acari: Ixodidae) Suitable Habitat in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:384-391. [PMID: 30544234 DOI: 10.1093/jme/tjy210] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 06/09/2023]
Abstract
Asian longhorned or bush tick (Haemaphysalis longicornis Neumann) is a vector species of considerable medical and veterinary importance within its native range in East Asia, and in introduced areas of Australia and Oceania. Recently, this tick species was detected in several regions of the United States. This study aimed at modeling areas suitable for H. longicornis in North America using maximum entropy distribution modeling or Maxent. Occurrence records of H. longicornis within its present range were obtained from published literature. The Maxent model contained a small number of a priori climatic and ecological variables. Annual temperature, precipitation, and ecological zones were found the most important in creating sensitive and specific model (success rate = 91.8%) that had a good fit to the existing data. The model predicted suitable H. longicornis habitat in most of eastern North America from southern Canada to the Gulf Coast, and in a small temperate area on the West Coast. Coastal areas were among the highest ranked suitable habitat. Another highly suitable region was identified in mid-western and southern United States where Heartland virus transmission takes place. This finding is of concern, since H. longicornis ticks vector a closely related virus in East Asia. Delineation of areas suitable for H. longicornis can facilitate detection, prepare public health authorities, and inform the general public about this potentially pestiferous and medically important species.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology, Rutgers University, New Brunswick, NJ
| |
Collapse
|
36
|
Ferreting out viral pathogenesis. Nat Microbiol 2019; 4:384-385. [PMID: 30787477 DOI: 10.1038/s41564-019-0390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Xu H, Wei Y, Ma H, Liu Y, Zhang Y, Hu L, Li J. Alterations of Gut Microbiome in the Patients With Severe Fever With Thrombocytopenia Syndrome. Front Microbiol 2018; 9:2315. [PMID: 30327643 PMCID: PMC6174290 DOI: 10.3389/fmicb.2018.02315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease caused by SFTS virus, and the number of SFTS cases increased year by year in China. Previous studies had indicated that gut microbiome closely associated with human health and diseases, including infection diseases, liver diseases, gastrointestinal diseases and metabolic diseases. The aim of this study is to investigate the alterations and involvements of gut microbial in SFTS patients. We compared the gut microbiome of 26 SFTS patients between 20 health controls using the Illumina MiSeq sequencing platform. Reduced gut microbiota diversity and dramatic shifts of fecal microbial composition in SFTS patients were observed compared with health controls. In the intestinal microbial of SFTS patients, the Lachnospiraceae and Ruminococcaceae which could produce short-chain fatty acids were clearly dropped compared with health people, meanwhile, Sutterella which have anti-inflammation properties were reduced too. On the contrary, some common opportunistic pathogens like Enterococcus and Streptococcus and endotoxin-producing bacteria Escherichia which could rise the risk of infections were increased in SFTS patients than healthy people, in addition lactate-producing bacteria Lactobacillaceae also significantly increased in SFTS patients. In addition, research findings on the correlation between gut microbiota and biochemical data found that the changes of gut microbiota of SFTS patients were closely associated with clinical symptoms, key serum enzymes, infection and mortality. These alterations of gut microbiome in SFTS patients suggest the potential contributions of gut microbial to the pathogenesis of SFTS.
Collapse
Affiliation(s)
- Honghai Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
| | - Yuanyuan Wei
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China.,Department of Hospital Infection Control, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongqiu Ma
- Department of Hospital Infection Control, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanyan Liu
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
| | - Yalong Zhang
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
| | - Lifen Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, China
| |
Collapse
|