1
|
Hunter RP, Madigan R. The effects of formulation on the pharmacokinetics of itraconazole and amiodarone in dogs after oral administration of a combination product, commercial products, and compounded products. J Vet Pharmacol Ther 2024; 47:65-72. [PMID: 37818972 DOI: 10.1111/jvp.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
This study evaluated four different formulations of itraconazole and amiodarone. Formulation 1 was Vida's combination tablet containing both active pharmaceutical ingredients (APIs). Formulation 2 was separate, commercially available human generic capsules and tablets of itraconazole and amiodarone, respectively. Formulation 3 was separate, compounded suspensions of itraconazole and amiodarone. Formulation 4 was a compounded chewable tablet of itraconazole. Eight female dogs were dosed with 5 mg/kg of itraconazole and 15 mg/kg amiodarone (except for formulation 4, which only received 5 mg/kg itraconazole) once weekly for 4 weeks using a modified Latin Square design, ensuring that all dogs received all formulations with a 7-day washout between treatments. Animals were fasted overnight prior to each dose administration, with food returned to all animals 4 h post-dose. Blood samples (3 mL) were collected pre-treatment (0) and at appropriate time points over 72 h after each dose for a total of 14 samples per dog per treatment. There was high variability in the serum concentration data within treatment groups for itraconazole. The compounded suspensions were difficult to dose due to the nature of the formulations. The volumes dosed were accurate and consistent, but the suspension was thin and settled immediately when shaking was stopped for both itraconazole and amiodarone. All serum samples following itraconazole chewable tablet administration were not detectable or just above itraconazole's LOQ and thus did not allow for pharmacokinetic determination.
Collapse
Affiliation(s)
| | - Roy Madigan
- Vida Pharmacal, Inc., Spring Branch, Texas, USA
| |
Collapse
|
2
|
Smircich P, Pérez-Díaz L, Hernández F, Duhagon MA, Garat B. Transcriptomic analysis of the adaptation to prolonged starvation of the insect-dwelling Trypanosoma cruzi epimastigotes. Front Cell Infect Microbiol 2023; 13:1138456. [PMID: 37091675 PMCID: PMC10117895 DOI: 10.3389/fcimb.2023.1138456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Trypanosoma cruzi is a digenetic unicellular parasite that alternates between a blood-sucking insect and a mammalian, host causing Chagas disease or American trypanosomiasis. In the insect gut, the parasite differentiates from the non-replicative trypomastigote forms that arrive upon blood ingestion to the non-infective replicative epimastigote forms. Epimastigotes develop into infective non-replicative metacyclic trypomastigotes in the rectum and are delivered via the feces. In addition to these parasite stages, transitional forms have been reported. The insect-feeding behavior, characterized by few meals of large blood amounts followed by long periods of starvation, impacts the parasite population density and differentiation, increasing the transitional forms while diminishing both epimastigotes and metacyclic trypomastigotes. To understand the molecular changes caused by nutritional restrictions in the insect host, mid-exponentially growing axenic epimastigotes were cultured for more than 30 days without nutrient supplementation (prolonged starvation). We found that the parasite population in the stationary phase maintains a long period characterized by a total RNA content three times smaller than that of exponentially growing epimastigotes and a distinctive transcriptomic profile. Among the transcriptomic changes induced by nutrient restriction, we found differentially expressed genes related to managing protein quality or content, the reported switch from glucose to amino acid consumption, redox challenge, and surface proteins. The contractile vacuole and reservosomes appeared as cellular components enriched when ontology term overrepresentation analysis was carried out, highlighting the roles of these organelles in starving conditions possibly related to their functions in regulating cell volume and osmoregulation as well as metabolic homeostasis. Consistent with the quiescent status derived from nutrient restriction, genes related to DNA metabolism are regulated during the stationary phase. In addition, we observed differentially expressed genes related to the unique parasite mitochondria. Finally, our study identifies gene expression changes that characterize transitional parasite forms enriched by nutrient restriction. The analysis of the here-disclosed regulated genes and metabolic pathways aims to contribute to the understanding of the molecular changes that this unicellular parasite undergoes in the insect vector.
Collapse
Affiliation(s)
- Pablo Smircich
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Bioinformática, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- *Correspondence: Beatriz Garat, ; Pablo Smircich,
| | - Leticia Pérez-Díaz
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Fabricio Hernández
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Departamento de Genética, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| | - Beatriz Garat
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Beatriz Garat, ; Pablo Smircich,
| |
Collapse
|
3
|
Barbosa JMC, Pedra-Rezende Y, Pereira LD, de Melo TG, Barbosa HS, Lannes-Vieira J, de Castro SL, Daliry A, Salomão K. Benznidazole and amiodarone combined treatment attenuates cytoskeletal damage in Trypanosoma cruzi-infected cardiac cells. Front Cell Infect Microbiol 2022; 12:975931. [PMID: 36093188 PMCID: PMC9452897 DOI: 10.3389/fcimb.2022.975931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, is an important public health problem mainly in Latin America, leading to approximately 12,000 annual deaths. Current etiological treatment for CD is limited to two nitro compounds, benznidazole (Bz) and nifurtimox (Nif), both presenting relevant limitations. Different approaches have been employed to establish more effective and safer schemes to treat T. cruzi infection, mostly based on drug repurposing and combination therapies. Amiodarone (AMD), an antiarrhythmic medicament of choice for patients with the chronic cardiac form of CD, is also recognized as a trypanocidal agent. Therefore, our aim is to investigate the combined treatment Bz + AMD on trypomastigote viability, control of T. cruzi intracellular form proliferation, and recovery of the infection-induced cytoskeleton alterations in cardiac cells. The combination of Bz + AMD did not improve the direct trypanocidal effect of AMD on the infective blood trypomastigote and replicative intracellular forms of the parasite. Otherwise, the treatment of T. cruzi-infected cardiac cells with Bz plus AMD attenuated the infection-triggered cytoskeleton damage of host cells and the cytotoxic effects of AMD. Thus, the combined treatment Bz + AMD may favor parasite control and hamper tissue damage.
Collapse
Affiliation(s)
| | | | | | | | - Helene Santos Barbosa
- Laboratóriode de Biologia Estrutural, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Anissa Daliry
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kelly Salomão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Kelly Salomão,
| |
Collapse
|
4
|
Effects of amiodarone, amioder, and dronedarone on Trichomonas vaginalis. Parasitol Res 2022; 121:1761-1773. [DOI: 10.1007/s00436-022-07521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
|
5
|
Porto R, Mengarda AC, Cajas RA, Salvadori MC, Teixeira FS, Arcanjo DDR, Siyadatpanah A, Pereira MDL, Wilairatana P, de Moraes J. Antiparasitic Properties of Cardiovascular Agents against Human Intravascular Parasite Schistosoma mansoni. Pharmaceuticals (Basel) 2021; 14:ph14070686. [PMID: 34358112 PMCID: PMC8308662 DOI: 10.3390/ph14070686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/21/2023] Open
Abstract
The intravascular parasitic worm Schistosoma mansoni is a causative agent of schistosomiasis, a disease of great global public health significance. Praziquantel is the only drug available to treat schistosomiasis and there is an urgent demand for new anthelmintic agents. Adopting a phenotypic drug screening strategy, here, we evaluated the antiparasitic properties of 46 commercially available cardiovascular drugs against S. mansoni. From these screenings, we found that amiodarone, telmisartan, propafenone, methyldopa, and doxazosin affected the viability of schistosomes in vitro, with effective concentrations of 50% (EC50) and 90% (EC90) values ranging from 8 to 50 µM. These results were further supported by scanning electron microscopy analysis. Subsequently, the most effective drug (amiodarone) was further tested in a murine model of schistosomiasis for both early and chronic S. mansoni infections using a single oral dose of 400 mg/kg or 100 mg/kg daily for five consecutive days. Amiodarone had a low efficacy in chronic infection, with the worm and egg burden reduction ranging from 10 to 30%. In contrast, amiodarone caused a significant reduction in worm and egg burden in early infection (>50%). Comparatively, treatment with amiodarone is more effective in early infection than praziquantel, demonstrating the potential role of this cardiovascular drug as an antischistosomal agent.
Collapse
Affiliation(s)
- Raquel Porto
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; (R.P.); (A.C.M.); (R.A.C.)
| | - Ana C. Mengarda
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; (R.P.); (A.C.M.); (R.A.C.)
| | - Rayssa A. Cajas
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; (R.P.); (A.C.M.); (R.A.C.)
| | - Maria C. Salvadori
- Institute of Physics, University of São Paulo, São Paulo 05508-060, SP, Brazil; (M.C.S.); (F.S.T.)
| | - Fernanda S. Teixeira
- Institute of Physics, University of São Paulo, São Paulo 05508-060, SP, Brazil; (M.C.S.); (F.S.T.)
| | - Daniel D. R. Arcanjo
- Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, PI, Brazil;
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (P.W.); (J.d.M.)
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; (R.P.); (A.C.M.); (R.A.C.)
- Correspondence: (P.W.); (J.d.M.)
| |
Collapse
|
6
|
Santos JRDJ, Jesus CAFD, Damasceno Pinto C. Scientific mapping of stem cells associated with Chagas disease : A bibliometric analysis. COLLNET JOURNAL OF SCIENTOMETRICS AND INFORMATION MANAGEMENT 2021. [DOI: 10.1080/09737766.2021.1977094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Cláudio Damasceno Pinto
- Technological Innovation Center of Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Salvador, Brazil
| |
Collapse
|
7
|
Benaim G, Paniz-Mondolfi AE, Sordillo EM. The Rationale for Use of Amiodarone and its Derivatives for the Treatment of Chagas' Disease and Leishmaniasis. Curr Pharm Des 2021; 27:1825-1833. [PMID: 32988342 DOI: 10.2174/1381612826666200928161403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022]
Abstract
The repurposing or repositioning of previously-approved drugs has become an accepted strategy for the expansion of the pharmacopeia for neglected diseases. Accordingly, amiodarone, an inexpensive and extensively- used class III antiarrhythmic has been proposed as a treatment for Chagas' disease and leishmaniasis. Amiodarone has a potent trypanocidal and leishmanicidal action, mainly acting through the disruption of parasite intracellular Ca2+ homeostasis, which is a recognized target of different drugs that have activity against trypanosomatids. Amiodarone collapses the mitochondrial electrochemical potential (Δφm) and induces the rapid alkalinization of parasite acidocalcisomes, driving a large increase in the intracellular Ca2+ concentration. Amiodarone also inhibits oxidosqualene cyclase activity, a key enzyme in the ergosterol synthesis pathway that is essential for trypanosomatid survival. In combination, these three effects lead to parasite death. Dronedarone, a drug synthesized to minimize some of the adverse effects of amiodarone, displays trypanocidal and leishmanicidal activity through the same mechanisms, but curiously, being more potent on Leishmaniasis than its predecessor. In vitro studies suggest that other recently-synthesized benzofuran derivatives can act through the same mechanisms, and produce similar effects on different trypanosomatid species. Recently, the combination of amiodarone and itraconazole has been used successfully to treat 121 dogs naturally-infected by T. cruzi, strongly supporting the potential therapeutic use of this combination against human trypanosomatid infections.
Collapse
Affiliation(s)
- Gustavo Benaim
- Instituto de Estudios Avanzados (IDEA) , Caracas, Venezuela
| | | | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
8
|
Mazzeti AL, Capelari-Oliveira P, Bahia MT, Mosqueira VCF. Review on Experimental Treatment Strategies Against Trypanosoma cruzi. J Exp Pharmacol 2021; 13:409-432. [PMID: 33833592 PMCID: PMC8020333 DOI: 10.2147/jep.s267378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Currently, only nitroheterocyclic nifurtimox (NFX) and benznidazole (BNZ) are available for the treatment of Chagas disease, with limitations such as variable efficacy, long treatment regimens and toxicity. Different strategies have been used to discover new active molecules for the treatment of Chagas disease. Target-based and phenotypic screening led to thousands of compounds with anti-T. cruzi activity, notably the nitroheterocyclic compounds, fexinidazole and its metabolites. In addition, drug repurposing, drug combinations, re-dosing regimens and the development of new formulations have been evaluated. The CYP51 antifungal azoles, as posaconazole, ravuconazole and its prodrug fosravuconazole presented promising results in experimental Chagas disease. Drug combinations of nitroheterocyclic and azoles were able to induce cure in murine infection. New treatment schemes using BNZ showed efficacy in the experimental chronic stage, including against dormant forms of T. cruzi. And finally, sesquiterpene lactone formulated in nanocarriers displayed outstanding efficacy against different strains of T. cruzi, susceptible or resistant to BNZ, the reference drug. These pre-clinical results are encouraging and provide interesting evidence to improve the treatment of patients with Chagas disease.
Collapse
Affiliation(s)
- Ana Lia Mazzeti
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil.,Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Patricia Capelari-Oliveira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maria Terezinha Bahia
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
9
|
Pance A. The Stem Cell Revolution Revealing Protozoan Parasites' Secrets and Paving the Way towards Vaccine Development. Vaccines (Basel) 2021; 9:105. [PMID: 33572549 PMCID: PMC7911700 DOI: 10.3390/vaccines9020105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Protozoan infections are leading causes of morbidity and mortality in humans and some of the most important neglected diseases in the world. Despite relentless efforts devoted to vaccine and drug development, adequate tools to treat and prevent most of these diseases are still lacking. One of the greatest hurdles is the lack of understanding of host-parasite interactions. This gap in our knowledge comes from the fact that these parasites have complex life cycles, during which they infect a variety of specific cell types that are difficult to access or model in vitro. Even in those cases when host cells are readily available, these are generally terminally differentiated and difficult or impossible to manipulate genetically, which prevents assessing the role of human factors in these diseases. The advent of stem cell technology has opened exciting new possibilities to advance our knowledge in this field. The capacity to culture Embryonic Stem Cells, derive Induced Pluripotent Stem Cells from people and the development of protocols for differentiation into an ever-increasing variety of cell types and organoids, together with advances in genome editing, represent a huge resource to finally crack the mysteries protozoan parasites hold and unveil novel targets for prevention and treatment.
Collapse
Affiliation(s)
- Alena Pance
- The Wellcome Sanger Institute, Genome Campus, Hinxton Cambridgeshire CB10 1SA, UK
| |
Collapse
|
10
|
Martewicz S, Magnussen M, Elvassore N. Beyond Family: Modeling Non-hereditary Heart Diseases With Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2020; 11:384. [PMID: 32390874 PMCID: PMC7188911 DOI: 10.3389/fphys.2020.00384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022] Open
Abstract
Non-genetic cardiac pathologies develop as an aftermath of extracellular stress-conditions. Nevertheless, the response to pathological stimuli depends deeply on intracellular factors such as physiological state and complex genetic backgrounds. Without a thorough characterization of their in vitro phenotype, modeling of maladaptive hypertrophy, ischemia and reperfusion injury or diabetes in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has been more challenging than hereditary diseases with defined molecular causes. In past years, greater insights into hPSC-CM in vitro physiology and advancements in technological solutions and culture protocols have generated cell types displaying stress-responsive phenotypes reminiscent of in vivo pathological events, unlocking their application as a reductionist model of human cardiomyocytes, if not the adult human myocardium. Here, we provide an overview of the available literature of pathology models for cardiac non-genetic conditions employing healthy (or asymptomatic) hPSC-CMs. In terms of numbers of published articles, these models are significantly lagging behind monogenic diseases, which misrepresents the incidence of heart disease causes in the human population.
Collapse
Affiliation(s)
- Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Michael Magnussen
- Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nicola Elvassore
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China.,Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Venetian Institute of Molecular Medicine, Padua, Italy.,Department of Industrial Engineering, University of Padova, Padua, Italy
| |
Collapse
|
11
|
Sass G, Tsamo AT, Chounda GAM, Nangmo PK, Sayed N, Bozzi A, Wu JC, Nkengfack AE, Stevens DA. Vismione B Interferes with Trypanosoma cruzi Infection of Vero Cells and Human Stem Cell-Derived Cardiomyocytes. Am J Trop Med Hyg 2020; 101:1359-1368. [PMID: 31571568 DOI: 10.4269/ajtmh.19-0350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traditional African medicine is a source of new molecules that might be useful in modern therapeutics. We tested ten limonoids, six quinones, one xanthone, one alkaloid, and one cycloartane, isolated from four Cameroonian medicinal plants, and one plant-associated endophytic fungus, against Trypanosoma cruzi, the etiological agent of Chagas disease (CD). Vero cells, or human-induced pluripotent stem cells (hiPSC)-derived cardiomyocytes (hiPSC-CM) were infected with T. cruzi trypomastigotes (discrete typing unit types I or II). Infection took place in the presence of drugs, or 24 hours before drug treatment. Forty-eight hours after infection, infection rates and parasite multiplication were evaluated by Giemsa stain. Cell metabolism was measured to determine functional integrity. In Vero cells, several individual molecules significantly affected T. cruzi infection and multiplication with no, or minor, effects on cell viability. Reduced infection rates and multiplication by the quinone vismione B was superior to the commonly used therapeutic benznidazole (BNZ). The vismione B concentration inhibiting 50% of T. cruzi infection (IC50) was 1.3 µM. When drug was applied after infection, anti-Trypanosoma effects of vismione B [10 µM) were significantly stronger than effects of BNZ (23 µM). Furthermore, in hiPSC-CM cultures, infection and multiplication rates in the presence of vismione B (10 µM) were significantly lower than in BNZ (11.5 µM), without showing signs of cytotoxicity. Our data indicate that vismione B is more potent against T. cruzi infection and multiplication than BNZ, with stronger effects on established infection. Vismione B, therefore, might become a promising lead molecule for treatment development for CD.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, California
| | - Armelle T Tsamo
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Gwladys A M Chounda
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Pamela K Nangmo
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Nazish Sayed
- Department of Radiology, School of Medicine, Stanford University, Stanford, California.,Division of Cardiology, Department of Medicine, School of Medicine, Stanford University, Stanford, California.,Institute of Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California.,Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | - Adriana Bozzi
- California Institute for Medical Research, San Jose, California.,Division of Cardiology, Department of Medicine, School of Medicine, Stanford University, Stanford, California.,Institute of Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California.,Institute of Research René Rachou, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, Brazil.,Department of Medicine, School of Medicine, Stanford University, Stanford, California.,Department of Radiology, School of Medicine, Stanford University, Stanford, California
| | - Joseph C Wu
- Division of Cardiology, Department of Medicine, School of Medicine, Stanford University, Stanford, California.,Department of Radiology, School of Medicine, Stanford University, Stanford, California.,Institute of Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California.,Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | - Augustin E Nkengfack
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - David A Stevens
- Institute of Research René Rachou, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, Brazil.,California Institute for Medical Research, San Jose, California
| |
Collapse
|
12
|
Breyner NM, Hecht M, Nitz N, Rose E, Carvalho JL. In vitro models for investigation of the host-parasite interface - possible applications in acute Chagas disease. Acta Trop 2020; 202:105262. [PMID: 31706861 DOI: 10.1016/j.actatropica.2019.105262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi, is the main parasitic disease in the Western Hemisphere, with an increasing number of cases, especially in non-endemic regions. The disease is characterized by cardiomegaly and mega viscera, nevertheless, the clinical outcome is hard to predict, underscoring the need for further research into the pathophysiology of CD. Even though most basic and translational research involving CD is performed using in vivo models, in vitro models arise as an ethical, rapidly evolving, and physiologically relevant alternative for CD research. In the present review, we discuss the past and recent in vitro models available to study the host-parasite interface in cardiac and intestinal CD, critically analyzing the possibilities and limitations of state-of-the-art alternatives for the CD host-parasite investigation.
Collapse
Affiliation(s)
- Natália Martins Breyner
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Ester Rose
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| | - Juliana Lott Carvalho
- Faculty of Medicine, University of Brasília, Brasília, Brazil; Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Distrito Federal, Brazil.
| |
Collapse
|