1
|
Msellemu D, Tanner M, Yadav R, Moore SJ. Occupational exposure to malaria, leishmaniasis and arbovirus vectors in endemic regions: A systematic review. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100185. [PMID: 39027087 PMCID: PMC11252614 DOI: 10.1016/j.crpvbd.2024.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/26/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024]
Abstract
Vector-borne diseases, including dengue, leishmaniasis and malaria, may be more common among individuals whose occupations or behaviours bring them into frequent contact with these disease vectors outside of their homes. A systematic review was conducted to ascertain at-risk occupations and situations that put individuals at increased risk of exposure to these disease vectors in endemic regions and identify the most suitable interventions for each exposure. The review was conducted in accordance with PRISMA guidelines on articles published between 1945 and October 2021, searched in 16 online databases. The primary outcome was incidence or prevalence of dengue, leishmaniasis or malaria. The review excluded ecological and qualitative studies, abstracts only, letters, commentaries, reviews, and studies of laboratory-acquired infections. Studies were appraised, data extracted, and a descriptive analysis conducted. Bite interventions for each risk group were assessed. A total of 1170 articles were screened and 99 included. Malaria, leishmaniasis and dengue were presented in 47, 41 and 24 articles, respectively; some articles presented multiple conditions. The most represented populations were soldiers, 38% (43 of 112 studies); refugees and travellers, 15% (17) each; migrant workers, 12.5% (14); miners, 9% (10); farmers, 5% (6); rubber tappers and missionaries, 1.8% (2) each; and forest workers, 0.9% (1). Risk of exposure was categorised into round-the-clock or specific times of day/night dependent on occupation. Exposure to these vectors presents a critical and understudied concern for outdoor workers and mobile populations. When devising interventions to provide round-the-clock vector bite protection, two populations are considered. First, mobile populations, characterized by their high mobility, may find potential benefits in insecticide-treated clothing, though more research and optimization are essential. Treated clothing offers personal vector protection and holds promise for economically disadvantaged individuals, especially when enabling them to self-treat their clothing to repel vectors. Secondly, semi-permanent and permanent settlement populations can receive a combination of interventions that offer both personal and community protection, including spatial repellents, suitable for extended stays. Existing research is heavily biased towards tourism and the military, diverting attention and resources from vulnerable populations where these interventions are most required like refugee populations as well as those residing in sub-Saharan Africa.
Collapse
Affiliation(s)
- Daniel Msellemu
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Rajpal Yadav
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
- Academy of Public Health Entomology, Udaipur, 313 002, India
| | - Sarah J. Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
- The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Arusha, Tanzania
| |
Collapse
|
2
|
Okati-Aliabad H, Ansari-Moghaddam A, Mohammadi M, Nejati J, Ranjbar M, Raeisi A, Kolifarhood G, Shahraki-Sanavi F, Khorram A. Access, utilization, and barriers to using malaria protection tools in migrants to Iran. BMC Public Health 2022; 22:1615. [PMID: 36008787 PMCID: PMC9404647 DOI: 10.1186/s12889-022-13913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background Imported malaria cases could be considered one of the threats to malaria elimination. Therefore, increasing migrants’ access to malaria preventive measures can play an essential role in maintaining appropriate conditions and preventing malaria outbreaks. This study aimed to provide detailed information about access, utilization, and barriers to using malaria protection tools in migrants to Iran. Methods This study was conducted in a vast region consisting of 4 provinces and 38 cities located in the south and southeast of the country. Study participants were migrants who moved to the study area in the past three months. A sample of 4163 migrants participated in the study. They were selected through a multi-stage sampling method to obtain a representative community sample. Data were collected through interviewer-administered questionnaires about participants’ socio-demographic specification, commuting characteristics, travel aim, access, ways of preparing, and reasons to use or not to use malaria protection tools. Quantitative and qualitative variables were described and analyzed finally. Results The mean age of individuals was 28.6 ± 10.8, with a range of 3–88 years old. Migrants’ country of origin was Afghanistan (56.6%), Pakistan (38.4%), and Iran (5%). Most migrants (69.2%) did not have malaria protection tools while staying in Iran. Among those who procured the protection tools, 74% used long-lasting insecticidal nets (LLINs), 13.4% used mosquito repellent sticks and coil, and 12.7% did not use any tools. Respectively, lack of knowledge about where they can get LLINs, followed by being expensive, unavailability in the market, not cooperation of health officer, and no need to use were expressed as the causes for having no access. The main reasons for non-using the tools were lack of knowledge about their application, followed by a defect in protection tools, ineffectiveness, and being harmful, respectively. Migrants who were supported by an employer accessed more to LLINs. Conclusions This study reveals significant shortcomings in knowledge, access, and utilization of malaria protection tools among migrants in Iran. Inequitable access to public health services is predictable during migration; however, access to sustainable protection tools is recommended.
Collapse
Affiliation(s)
- Hassan Okati-Aliabad
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Mahdi Mohammadi
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Jalil Nejati
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mansour Ranjbar
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ahmad Raeisi
- National Program for Malaria Control, Center of Disease Control & Prevention, Ministry of Health and Medical Education, Tehran, Iran
| | - Goodarz Kolifarhood
- National Program for Malaria Control, Center of Disease Control & Prevention, Ministry of Health and Medical Education, Tehran, Iran
| | | | - Alireza Khorram
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
3
|
Jacobson D, Zheng Y, Plucinski MM, Qvarnstrom Y, Barratt JLN. Evaluation of various distance computation methods for construction of haplotype-based phylogenies from large MLST dataset. Mol Phylogenet Evol 2022; 177:107608. [PMID: 35963590 PMCID: PMC10127246 DOI: 10.1016/j.ympev.2022.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Multi-locus sequence typing (MLST) is widely used to investigate genetic relationships among eukaryotic taxa, including parasitic pathogens. MLST analysis workflows typically involve construction of alignment-based phylogenetic trees - i.e., where tree structures are computed from nucleotide differences observed in a multiple sequence alignment (MSA). Notably, alignment-based phylogenetic methods require that all isolates/taxa are represented by a single sequence. When multiple loci are sequenced these sequences may be concatenated to produce one tree that includes information from all loci. Alignment-based phylogenetic techniques are robust and widely used yet possess some shortcomings, including how heterozygous sites are handled, intolerance for missing data (i.e., partial genotypes), and differences in the way insertions-deletions (indels) are scored/treated during tree construction. In certain contexts, 'haplotype-based' methods may represent a viable alternative to alignment-based techniques, as they do not possess the aforementioned limitations. This is namely because haplotype-based methods assess genetic similarity based on numbers of shared (i.e., intersecting) haplotypes as opposed to similarities in nucleotide composition observed in an MSA. For haplotype-based comparisons, choosing an appropriate distance statistic is fundamental, and several statistics are available to choose from. However, a comprehensive assessment of various available statistics for their ability to produce a robust haplotype-based phylogenetic reconstruction has not yet been performed. We evaluated seven distance statistics by applying them to extant MLST datasets from the gastrointestinal parasite Cyclospora cayetanensis and two species of pathogenic nematode of the genus Strongyloides. We compare the genetic relationships identified using each statistic to epidemiologic, geographic, and host metadata. We show that Barratt's heuristic definition of genetic distance was the most robust among the statistics evaluated. Consequently, it is proposed that Barratt's heuristic represents a useful approach for use in the context of challenging MLST datasets possessing features (i.e., high heterozygosity, partial genotypes, and indel or repeat-based polymorphisms) that confound or preclude the use of alignment-based methods.
Collapse
Affiliation(s)
- David Jacobson
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA; Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Yueli Zheng
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA; Eagle Global Scientific, San Antonio, TX, USA
| | - Mateusz M Plucinski
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA; U.S. President's Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yvonne Qvarnstrom
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel L N Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
4
|
Rogier E, Nace D, Dimbu PR, Wakeman B, Beeson JG, Drakeley C, Tetteh K, Plucinski M. Antibody dynamics in children with first or repeat Plasmodium falciparum infections. Front Med (Lausanne) 2022; 9:869028. [PMID: 35928289 PMCID: PMC9343764 DOI: 10.3389/fmed.2022.869028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin (Ig) production during and after infection with Plasmodium parasites is one of the greatest adaptive immune defenses the human host has against this parasite. Infection with P. falciparum has been shown to induce different B cell maturation responses dependent upon the age of the patient, number of previous exposures, and severity of the disease. Described here are dynamics of Ig responses to a panel of 32 P. falciparum antigens by patients followed for 42 days and classified individuals as showing characteristics of an apparent first P. falciparum infection (naïve) or a repeat exposure (non-naïve). Six parameters were modeled to characterize the dynamics of IgM, IgG1, IgG3, and IgA for these two exposure groups with differences assessed among Ig isotypes/subclasses and unique antigens. Naïve patients had significantly longer periods of time to reach peak Ig titer (range 4–7 days longer) and lower maximum Ig titers when compared with non-naïve patients. Modeled time to seronegativity was significantly higher in non-naïve patients for IgM and IgA, but not for the two IgG subclasses. IgG1 responses to Rh2030, HSP40, and PfAMA1 were at the highest levels for non-naïve participants and may be used to predict previous or nascent exposure by themselves. The analyses presented here demonstrate the differences in the development of the Ig response to P. falciparum if the infection represents a boosting response or a primary exposure. Consistency in Ig isotype/subclasses estimates and specific data for P. falciparum antigens can better guide interpretation of seroepidemiological data among symptomatic persons.
Collapse
Affiliation(s)
- Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
- *Correspondence: Eric Rogier,
| | - Doug Nace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | - Brian Wakeman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - James G. Beeson
- Burnet Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Chris Drakeley
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kevin Tetteh
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Mateusz Plucinski
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, United States
- U.S. President’s Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|