1
|
Bos S, Zambrana JV, Duarte E, Graber AL, Huffaker J, Montenegro C, Premkumar L, Gordon A, Kuan G, Balmaseda A, Harris E. Serotype-specific epidemiological patterns of inapparent versus symptomatic primary dengue virus infections: a 17-year cohort study in Nicaragua. THE LANCET. INFECTIOUS DISEASES 2025; 25:346-356. [PMID: 39489898 PMCID: PMC11864988 DOI: 10.1016/s1473-3099(24)00566-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Dengue is the most prevalent mosquito-borne viral disease and a major public health problem worldwide. Most primary infections with the four dengue virus serotypes (DENV1-4) are inapparent; nonetheless, whether the distribution of symptomatic versus inapparent infections by serotype varies remains unknown. Here, we present (1) the evaluation of a DENV1-4 envelope domain III multiplex microsphere-based assay (EDIII-MMBA) to serotype inapparent primary infections and (2) its application leveraging 17 years of prospective sample collection from the Nicaraguan Pediatric Dengue Cohort Study (PDCS). METHODS We analysed primary DENV infections in the PDCS from 2004 to 2022 detected by inhibition ELISA (iELISA) or RT-PCR. First, we evaluated the performance of the EDIII-MMBA for serotyping with samples characterised by RT-PCR or focus reduction neutralisation test. Next, we analysed a subset of inapparent primary DENV infections in the PDCS with the EDIII-MMBA to evaluate the epidemiology of inapparent infections. Remaining infections were inferred using stochastic imputation, taking year and neighbourhood into account. Infection incidence and percentage of inapparent, symptomatic, and severe infections were analysed by serotype. FINDINGS Between Aug 30, 2004, and March 10, 2022, a total of 5931 DENV-naive participants were followed in the PDCS. There were 1626 primary infections (382 symptomatic, 1244 inapparent) detected by iELISA or RT-PCR over the study period. The EDIII-MMBA demonstrated excellent overall accuracy (100%, 95% CI 95·8-100) for serotyping inapparent primary DENV infections when evaluated against gold-standard serotyping methods. Of the 1244 inapparent infections, we analysed 574 (46%) using the EDIII-MMBA. We found that the majority of primary infections were inapparent, with DENV3 exhibiting the highest likelihood of symptomatic (pooled odds ratio compared with DENV1: 2·13, 95% CI 1·28-3·56) and severe (6·75, 2·01-22·62) primary infections, whereas DENV2 was similar to DENV1 in both analyses. Considerable within-year and between-year variation in serotype distribution between symptomatic and inapparent infections and circulation of serotypes undetected in symptomatic cases were observed in multiple years. INTERPRETATION Our study indicates that case surveillance skews the perceived epidemiological footprint of DENV. We reveal a more complex and intricate pattern of serotype distribution in inapparent infections. The substantial differences in infection outcomes by serotype emphasises the need for vaccines with balanced immunogenicity and efficacy across serotypes. FUNDING National Institute of Allergy and Infectious Diseases (National Institutes of Health) and Bill & Melinda Gates Foundation. TRANSLATION For the Spanish translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Sandra Bos
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - José Victor Zambrana
- Sustainable Sciences Institute, Managua, Nicaragua; Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Elias Duarte
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron L Graber
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Julia Huffaker
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Carlos Montenegro
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua; Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua; Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Narvaez F, Montenegro C, Juarez JG, Zambrana JV, Gonzalez K, Videa E, Arguello S, Barrios F, Ojeda S, Plazaola M, Sanchez N, Camprubí-Ferrer D, Kuan G, Paz Bailey G, Harris E, Balmaseda A. Dengue severity by serotype and immune status in 19 years of pediatric clinical studies in Nicaragua. PLoS Negl Trop Dis 2025; 19:e0012811. [PMID: 39792951 PMCID: PMC11750095 DOI: 10.1371/journal.pntd.0012811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/21/2025] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Dengue virus, a major global health threat, consists of four serotypes (DENV1-4) that cause a range of clinical manifestations from mild to severe and potentially fatal disease. METHODS This study, based on 19 years of data from the Pediatric Dengue Cohort Study and Pediatric Dengue Hospital-based Study in Managua, Nicaragua, investigates the relationship of serotype and immune status with dengue severity. Dengue cases were confirmed by molecular, serological, and/or virological methods, and study participants 6 months to 17 years old were followed during their hospital stay or as ambulatory patients. RESULTS We enrolled a total of 15,833 participants, of whom 3,308 (21%) were positive for DENV infection. Of 2,644 cases with serotype result by RT-PCR, 559 corresponded to DENV1, 1,002 to DENV2, 760 to DENV3 and 323 to DENV4. Severe disease was more prevalent among secondary DENV2 and DENV4 cases, while similar disease severity was observed in both primary and secondary DENV1 and DENV3 cases. According to the 1997 World Health Organization (WHO) severity classification, both DENV2 and DENV3 caused a higher proportion of severe disease compared to other serotypes, whereas DENV3 caused the greatest percentage of severity according to the WHO-2009 classification. DENV2 was associated with increased odds of pleural effusion and low platelet count, while DENV3 was associated with both hypotensive and compensated shock. CONCLUSIONS These findings demonstrate differences in dengue severity by serotype and immune status and emphasize the critical need for a dengue vaccine with balanced effectiveness against all four serotypes, particularly as existing vaccines show variable efficacy by serotype and serostatus.
Collapse
Affiliation(s)
- Federico Narvaez
- Unidad de Infectología, Hospital Infantil Manuel de Jesús Rivera, Ministerio de Salud, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | | | | | - José Victor Zambrana
- Sustainable Sciences Institute, Managua, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Karla Gonzalez
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Elsa Videa
- Sustainable Sciences Institute, Managua, Nicaragua
| | | | - Fanny Barrios
- Unidad de Infectología, Hospital Infantil Manuel de Jesús Rivera, Ministerio de Salud, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua
| | | | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Daniel Camprubí-Ferrer
- Dengue Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, San Juan, Puerto Rico
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Gabriela Paz Bailey
- Dengue Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, San Juan, Puerto Rico
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| |
Collapse
|
3
|
Mercado-Hernandez R, Myers R, Bustos Carillo FA, Zambrana JV, López B, Sanchez N, Gordon A, Balmaseda A, Kuan G, Harris E. Obesity Is Associated With Increased Pediatric Dengue Virus Infection and Disease: A 9-Year Cohort Study in Managua, Nicaragua. Clin Infect Dis 2024; 79:1102-1108. [PMID: 39004909 PMCID: PMC11478807 DOI: 10.1093/cid/ciae360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Obesity is on the rise globally in adults and children, including in tropical areas where diseases such as dengue have a substantial burden, particularly in children. Obesity impacts risk of severe dengue disease; however, the impact on dengue virus (DENV) infection and dengue cases remains an open question. METHODS We used 9 years of data from 5940 children in the Pediatric Dengue Cohort Study in Nicaragua to determine whether pediatric obesity is associated with increased susceptibility to DENV infection and symptomatic presentation. Analysis was performed using generalized estimating equations adjusted for age, sex, and preinfection DENV antibody titers. RESULTS From 2011 to 2019, children contributed 26 273 person-years of observation, and we observed an increase in prevalence of overweight (from 12% to 17%) and obesity (from 7% to 13%). There were 1682 DENV infections and 476 dengue cases in the study population. Compared with participants with normal weight, participants with obesity had higher odds of DENV infection (adjusted odds ratio [aOR], 1.21; 95% confidence interval [CI]: 1.03-1.42) and higher odds of dengue in DENV-infected individuals (aOR, 1.59; 95% CI: 1.15-2.19). Children with obesity infected with DENV showed increased odds of presenting fever (aOR, 1.46; 95% CI: 1.05-2.02), headache (aOR, 1.51; 95% CI: 1.07-2.14), and rash (aOR, 2.26; 95% CI: 1.49-3.44) when compared with children with normal weight. CONCLUSIONS Our results indicate that obesity is associated with increased susceptibility to DENV infection and dengue cases in children, independent of age, sex, and preinfection DENV antibody titers.
Collapse
Affiliation(s)
- Reinaldo Mercado-Hernandez
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Rachel Myers
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Fausto Andres Bustos Carillo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - José Victor Zambrana
- Sustainable Sciences Institute, Managua, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Brenda López
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
4
|
Mariappan V, Shanmugam L, Ranganathan Green S, Easow JM, Mutheneni SR, Thirugnanasambandhar Sivasubramanian A, Balakrishna Pillai A. Increased shedding of PECAM-1 associated with elevated serum MMP-14 levels as new blood indicators of dengue disease manifestation. Infect Dis Now 2024; 54:104964. [PMID: 39181201 DOI: 10.1016/j.idnow.2024.104964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES Host factors that regulate plasma leakage during severe dengue (SD) are under investigation. While PECAM-1 and MMP-14 have been reported to regulate vascular integrity, their role in dengue pathogenesis remains unexplored. This study aims to assess the association of soluble PECAM-1 and MMP-14 with dengue severity symptoms. PATIENTS AND METHODS Serum levels of PECAM-1 and MMP-14 were evaluated in dengue (N-25) comprising 10 severe dengue (SD) and 15 non-severe dengue, 10 other febrile illnesses along with healthy controls (N-10) using ELISA. Protein levels were assessed using in vitro models. RESULTS From febrile to critical phase, a significant increase in PECAM-1 (P≤0.01) & MMP-14 (P≤0.001) levels were observed in SD cases compared to non-severe or other controls. Serum levels of PECAM-1 and MMP 14 were found to be positively (P≤0.001) associated. Soluble PECAM-1 levels of severe defervescence showed a positive correlation (P≤0.001) with plasma leakage and an inverse relationship (P≤0.001) with platelet count. In vitro analysis revealed elevated expression of study proteins in endothelial cells activated with severe serum samples. To the best of our knowledge, this is the first report to explore PECAM-1 or MMP-14 dynamics and their association with dengue severity. CONCLUSION Higher shedding of sPECAM-1 accompanied with increased levels of MMP-14 is strongly associated with severe dengue. However, the exact role of serum PECAM-1 in disease prognosis requires further studies.
Collapse
Affiliation(s)
- Vignesh Mariappan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| | - Lokesh Shanmugam
- ICMR-National Institute of Epidemiology (ICMR-NIE), Ayapakkam, Chennai 600 070, India.
| | - Siva Ranganathan Green
- Department of General Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| | - Joshy M Easow
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| | - Srinivasa Rao Mutheneni
- Division of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500 007, India.
| | | | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| |
Collapse
|
5
|
Pedreañez A, Carrero Y, Vargas R, Hernandez-Fonseca JP, Hernandez-Fonseca H, Mosquera JA. Role of Gut Microbiota in Dengue. Rev Med Virol 2024; 34:e2577. [PMID: 39215460 DOI: 10.1002/rmv.2577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Dengue is a disease caused by a flavivirus (DENV) and transmitted by the bite of a mosquito, primarily the Aedes aegypti and Aedes albopictus species. Previous studies have demonstrated a relationship between the host gut microbiota and the evolution of dengue. It seems to be a bidirectional relationship, in which the DENV can affect the microbiota by inducing alterations related to intestinal permeability, leading to the release of molecules from microbiota dysbiosis that can influence the evolution of dengue. The role of angiotensin II (Ang II) in the microbiota/dengue relationship is not well understood, but it is known that the renin-angiotensin system (RAS) is present in the intestinal tract and interacts with the gut microbiota. The possible effect of Ang II on the microbiota/Ang II/dengue relationship can be summarised as follows: the presence of Ang II induced hypertension, the increase in angiotensinogen, chymase, and microRNAs during the disease, the induction of vascular dysfunction, the production of trimethylamine N-oxide and the brain/microbiota relationship, all of which are elements present in dengue that could be part of the microbiota/Ang II/dengue interactions. These findings suggest the potential use of Ang II synthesis blockers and the use of AT1 receptor antagonists as therapeutic drugs in dengue.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Yenddy Carrero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan P Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
- Servicio de Microscopia Electrónica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, España
| | - Hugo Hernandez-Fonseca
- Facultad de Ciencias Veterinarias, Universidad del Zulia, Maracaibo, Venezuela
- Anatomy, Physiology and Pharmacology Department, School of Veterinary Medicine, Saint George's University, Saint George, Grenada
| | - Jesús A Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
6
|
Yu N, Chen S, Liu Y, Wang P, Wang L, Hu N, Zhang H, Li X, Lu H, Jin N. Pathogenicity and transcriptomic resolution in dengue virus serotype 1 infected AGB6 mouse model. J Med Virol 2024; 96:e29895. [PMID: 39228306 DOI: 10.1002/jmv.29895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Dengue viruses are the causative agents of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, which are mainly transmitted by Aedes aegypti and Aedes albopictus mosquitoes, and cost billions of dollars annually in patient treatment and mosquito control. Progress in understanding DENV pathogenesis and developing effective treatments has been hampered by the lack of a suitable small pathological animal model. Until now, the candidate vaccine, antibody, and drug for DENV have not been effectively evaluated. Here, we analyzed the pathogenicity of DENV-1 in type Ⅰ and type Ⅱ interferon receptor-deficient mice (AGB6) by intraperitoneal inoculation. Infected mice showed such neurological symptoms as opisthotonus, hunching, ataxia, and paralysis of one or both hind limbs. Viremia can be detected 3 days after infection. It was found that 6.98 × 103 PFU or higher dose induce 100% mortality. To determine the cause of lethality in mice, heart, liver, spleen, lung, kidney, intestinal, and brain tissues were collected from AGB6 mice (at an attack dose of 6.98 × 103 PFU) for RNA quantification, and it was found that the viral load in brain tissues peaked at moribund states (14 dpi) and that the viral loads in the other tissues and organs decreased over time. Significant histopathologic changes were observed in brain tissue (hippocampal region and cerebral cortex). Hematological analysis showed hemorrhage and hemoconcentration in infected mice. DENV-1 can be isolated from the brain tissue of infected mice. Subsequently, brain tissue transcriptome sequencing was performed to assess host response characteristics in infected AGB6 mice. Transcriptional patterns in brain tissue suggest that aberrant expression of pro-inflammatory cytokines induces antiviral responses and tissue damage. Screening of hub genes and their characterization by qPCR and ELISA, it was hypothesized that IL-6 and IFN-γ might be the key factors in dengue virus-induced inflammatory response. Therefore, this study provides an opportunity to decipher certain aspects of dengue pathogenesis further and provides a new platform for drug, antibody, and vaccine testing.
Collapse
Affiliation(s)
- Ning Yu
- College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shigang Chen
- College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yumeng Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Animal Science and Technology College, Guangxi University, Guangxi, China
| | - Peng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Longlong Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningning Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
| | - Ningyi Jin
- College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Animal Science and Technology College, Guangxi University, Guangxi, China
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun, China
| |
Collapse
|
7
|
Kayesh MEH, Nazneen H, Kohara M, Tsukiyama-Kohara K. An effective pan-serotype dengue vaccine and enhanced control strategies could help in reducing the severe dengue burden in Bangladesh-A perspective. Front Microbiol 2024; 15:1423044. [PMID: 39228383 PMCID: PMC11368799 DOI: 10.3389/fmicb.2024.1423044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Dengue is an important vector-borne disease occurring globally. Dengue virus (DENV) infection can result in a potentially life-threatening disease. To date, no DENV-specific antiviral treatment is available. Moreover, an equally effective pan-serotype dengue virus vaccine is not available. Recently, two DENV vaccines, Dengvaxia and Qdenga, were licensed for limited use. However, none of them have been approved in Bangladesh. DENV is transmitted by Aedes mosquitoes, and global warming caused by climate change favoring Aedes breeding plays an important role in increasing DENV infections in Bangladesh. Dengue is a serious public health concern in Bangladesh. In the year 2023, Bangladesh witnessed its largest dengue outbreak, with the highest number of dengue cases (n = 321,179) and dengue-related deaths (n = 1,705) in a single epidemic year. There is an increased risk of severe dengue in individuals with preexisting DENV-specific immunoglobulin G if the individuals become infected with different DENV serotypes. To date, vector control has remained the mainstay for controlling dengue; therefore, an immediate, strengthened, and effective vector control program is critical and should be regularly performed for controlling dengue outbreaks in Bangladesh. In addition, the use of DENV vaccine in curbing dengue epidemics in Bangladesh requires more consideration and judgment by the respective authority of Bangladesh. This review provides perspectives on the control and prevention of dengue outbreaks. We also discuss the challenges of DENV vaccine use to reduce dengue epidemics infection in Bangladesh.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Humayra Nazneen
- Department of Haematology, Dhaka Medical College Hospital, Dhaka, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Centre, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
8
|
Narvaez F, Montenegro C, Juarez JG, Zambrana JV, Gonzalez K, Videa E, Arguello S, Barrios F, Ojeda S, Plazaola M, Sanchez N, Camprubi D, Kuan G, Paz-Bailey G, Harris E, Balmaseda A. Dengue severity by serotype and immune status in 19 years of pediatric clinical studies in Nicaragua. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.11.24302393. [PMID: 38405964 PMCID: PMC10889012 DOI: 10.1101/2024.02.11.24302393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
BACKGROUND Dengue virus, a major global health threat, consists of four serotypes (DENV1-4) that cause a range of clinical manifestations from mild to severe and potentially fatal disease. METHODS This study, based on 19 years of data from the Pediatric Dengue Cohort Study and Pediatric Dengue Hospital-based Study in Managua, Nicaragua, investigates the relationship of serotype and immune status with dengue severity. Dengue cases were confirmed by molecular, serological, and/or virological methods, and sudy participants 6 months to 17 years old were followed during their hospital stay or as ambulatory patients. RESULTS We enrolled a total of 15,266 participants, of whom 3,227 (21%) were positive for DENV infection. Of 2,630 cases with serotype result by RT-PCR, 557 corresponded to DENV1, 992 to DENV2, 759 to DENV3 and 322 to DENV4. Severe disease was more prevalent among secondary DENV2 and DENV4 cases, while similar disease severity was observed in both primary and secondary DENV1 and DENV3 cases. According to the 1997 World Health Organization (WHO) severity classification, both DENV2 and DENV3 caused a higher proportion of severe disease compared to other serotypes, whereas DENV3 caused the greatest percentage of severity according to the WHO-2009 classification. DENV2 was associated with increased odds of pleural effusion and low platelet count, while DENV3 was associated with both hypotensive and compensated shock. CONCLUSIONS These findings demonstrate differences in dengue severity by serotype and immune status and emphasize the critical need for a dengue vaccine with balanced effectiveness against all four serotypes, particularly as existing vaccines show variable efficacy by serotype and serostatus.
Collapse
|
9
|
Morgan RN, Ismail NSM, Alshahrani MY, Aboshanab KM. Multi-epitope peptide vaccines targeting dengue virus serotype 2 created via immunoinformatic analysis. Sci Rep 2024; 14:17645. [PMID: 39085250 PMCID: PMC11291903 DOI: 10.1038/s41598-024-67553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
The Middle East has witnessed a greater spread of infectious Dengue viruses, with serotype 2 (DENV-2) being the most prevalent form. Through this work, multi-epitope peptide vaccines against DENV-2 that target E and nonstructural (NS1) proteins were generated through an immunoinformatic approach. MHC class I and II and LBL epitopes among NS1 and envelope E proteins sequences were predicted and their antigenicity, toxicity, and allergenicity were investigated. Studies of the population coverage denoted the high prevalence of NS1 and envelope-E epitopes among different countries where DENV-2 endemic. Further, both the CTL and HTL epitopes retrieved from NS1 epitopes exhibited high conservancies' percentages with other DENV serotypes (1, 3, and 4). Three vaccine constructs were created and the expected immune responses for the constructs were estimated using C-IMMSIM and HADDOCK (against TLR 2,3,4,5, and 7). Molecular dynamics simulation for vaccine construct 2 with TLR4 denoted high binding affinity and stability of the construct with the receptor which might foretell favorable in vivo interaction and immune responses.
Collapse
Affiliation(s)
- Radwa N Morgan
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nasser S M Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, 9088, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abbassia, POB: 11566, Cairo, 11566, Egypt.
| |
Collapse
|
10
|
Cerpas C, Vásquez G, Moreira H, Juarez JG, Coloma J, Harris E, Bennett SN, Balmaseda Á. Introduction of New Dengue Virus Lineages of Multiple Serotypes after COVID-19 Pandemic, Nicaragua, 2022. Emerg Infect Dis 2024; 30:1203-1213. [PMID: 38782023 PMCID: PMC11138998 DOI: 10.3201/eid3006.231553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Major dengue epidemics throughout Nicaragua's history have been dominated by 1 of 4 dengue virus serotypes (DENV-1-4). To examine serotypes during the dengue epidemic in Nicaragua in 2022, we performed real-time genomic surveillance in-country and documented cocirculation of all 4 serotypes. We observed a shift toward co-dominance of DENV-1 and DENV-4 over previously dominant DENV-2. By analyzing 135 new full-length DENV sequences, we found that introductions underlay the resurgence: DENV-1 clustered with viruses from Ecuador in 2014 rather than those previously seen in Nicaragua; DENV-3, which last circulated locally in 2014, grouped instead with Southeast Asia strains expanding into Florida and Cuba in 2022; and new DENV-4 strains clustered within a South America lineage spreading to Florida in 2022. In contrast, DENV-2 persisted from the formerly dominant Nicaragua clade. We posit that the resurgence emerged from travel after the COVID-19 pandemic and that the resultant intensifying hyperendemicity could affect future dengue immunity and severity.
Collapse
Affiliation(s)
- Cristhiam Cerpas
- Sustainable Sciences Institute, Managua, Nicaragua (C. Cerpas, G. Vásquez, H. Moreira, J.G. Juarez, Á. Balmaseda)
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia Ministerio de Salud, Managua (C. Cerpas, Á. Balmaseda)
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA (J. Coloma, E. Harris)
- California Academy of Sciences, San Francisco, California, USA (S.N. Bennett)
| | - Gerald Vásquez
- Sustainable Sciences Institute, Managua, Nicaragua (C. Cerpas, G. Vásquez, H. Moreira, J.G. Juarez, Á. Balmaseda)
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia Ministerio de Salud, Managua (C. Cerpas, Á. Balmaseda)
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA (J. Coloma, E. Harris)
- California Academy of Sciences, San Francisco, California, USA (S.N. Bennett)
| | - Hanny Moreira
- Sustainable Sciences Institute, Managua, Nicaragua (C. Cerpas, G. Vásquez, H. Moreira, J.G. Juarez, Á. Balmaseda)
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia Ministerio de Salud, Managua (C. Cerpas, Á. Balmaseda)
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA (J. Coloma, E. Harris)
- California Academy of Sciences, San Francisco, California, USA (S.N. Bennett)
| | - Jose G. Juarez
- Sustainable Sciences Institute, Managua, Nicaragua (C. Cerpas, G. Vásquez, H. Moreira, J.G. Juarez, Á. Balmaseda)
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia Ministerio de Salud, Managua (C. Cerpas, Á. Balmaseda)
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA (J. Coloma, E. Harris)
- California Academy of Sciences, San Francisco, California, USA (S.N. Bennett)
| | - Josefina Coloma
- Sustainable Sciences Institute, Managua, Nicaragua (C. Cerpas, G. Vásquez, H. Moreira, J.G. Juarez, Á. Balmaseda)
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia Ministerio de Salud, Managua (C. Cerpas, Á. Balmaseda)
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA (J. Coloma, E. Harris)
- California Academy of Sciences, San Francisco, California, USA (S.N. Bennett)
| | | | | | | |
Collapse
|
11
|
Zambrana JV, Hasund CM, Aogo RA, Bos S, Arguello S, Gonzalez K, Collado D, Miranda T, Kuan G, Gordon A, Balmaseda A, Katzelnick LC, Harris E. Primary exposure to Zika virus is linked with increased risk of symptomatic dengue virus infection with serotypes 2, 3, and 4, but not 1. Sci Transl Med 2024; 16:eadn2199. [PMID: 38809964 PMCID: PMC11927040 DOI: 10.1126/scitranslmed.adn2199] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Infection with any of the four dengue virus serotypes (DENV1-4) can protect against or enhance subsequent dengue depending on preexisting antibodies and infecting serotype. Additionally, primary infection with the related flavivirus Zika virus (ZIKV) is associated with increased risk of DENV2 disease. Here, we measured how prior DENV and ZIKV immunity influenced risk of disease caused by DENV1-4 in a pediatric Nicaraguan cohort. Of 3412 participants in 2022, 10.6% experienced dengue cases caused by DENV1 (n = 139), DENV4 (n = 133), DENV3 (n = 54), DENV2 (n = 9), or an undetermined serotype (n = 39). Longitudinal clinical and serological data were used to define infection histories, and generalized linear and additive models adjusted for age, sex, time since last infection, and year, and repeat measurements were used to predict disease risk. Compared with flavivirus-naïve participants, primary ZIKV infection was associated with increased risk of disease caused by DENV4 (relative risk = 2.62, 95% confidence interval: 1.48 to 4.63) and DENV3 (2.90, 1.34 to 6.27), but not DENV1 infection. Primary DENV infection or DENV followed by ZIKV infection was also associated with increased risk of DENV4 disease. We reanalyzed 19 years of cohort data and demonstrated that prior flavivirus immunity and antibody titer had distinct associations with disease risk depending on incoming serotype. We thus find that prior ZIKV infection, like prior DENV infection, is associated with increased risk of disease with certain DENV serotypes. Cross-reactivity among flaviviruses should be considered when assessing vaccine safety and efficacy.
Collapse
Affiliation(s)
- José Victor Zambrana
- Sustainable Sciences Institute, Managua 14006, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chloe M Hasund
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| | - Rosemary A Aogo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| | - Sandra Bos
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Sonia Arguello
- Sustainable Sciences Institute, Managua 14006, Nicaragua
| | - Karla Gonzalez
- Sustainable Sciences Institute, Managua 14006, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua 14062, Nicaragua
| | | | | | - Guillermina Kuan
- Sustainable Sciences Institute, Managua 14006, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua 12037, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua 14006, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua 14062, Nicaragua
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| |
Collapse
|
12
|
Hirata K, Chiba T, Gomi H, Takaya S, Kato Y, Shiga T. Diagnostic challenges in a patient with dengue shock syndrome presenting with acute meningoencephalitis. IDCases 2024; 36:e01964. [PMID: 38646600 PMCID: PMC11031802 DOI: 10.1016/j.idcr.2024.e01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024] Open
Abstract
Dengue is a systemic viral infection, and clinical findings vary from asymptomatic to life-threatening, including shock and neurological complications. Despite efforts in vector control, the disease continues to spread worldwide, and the number of annual dengue infections is estimated to be 390 million. For patients with severe dengue, early diagnosis is important; however, owing to the wide range of symptoms and severity, diagnosis can be difficult. Herein, we report the case of a 24-year-old man from Vietnam who was found to have dengue shock syndrome complicated by meningoencephalitis, even though he did not show the typical clinical manifestations of dengue infection. He was transported to our hospital by ambulance because of fever and altered mental status. Brain magnetic resonance imaging revealed hyperintensities in the bilateral thalamus and brainstem on the T2 sequence. After hospitalization, polymerase chain reaction testing of cerebrospinal fluid, serum, and urine revealed the presence of dengue virus serotype 2. This confirmed the diagnosis of dengue encephalitis. The patient was discharged on day 49 with impaired abduction of the left eye and urinary retention. In this case, the initial differential diagnosis was broad because the patient was unable to provide any medical history owing to altered mental status. In addition, the fact that he did not show the characteristic symptoms of dengue infection initially made the diagnosis very difficult. In conclusion, dengue fever should always be considered as a part of the differential diagnosis when a patient from an endemic area presents with fever and impaired consciousness.
Collapse
Affiliation(s)
- Kaiho Hirata
- Department of Emergency Medicine, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita City, Chiba 286-8520, Japan
| | - Takuyo Chiba
- Department of Emergency Medicine, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita City, Chiba 286-8520, Japan
| | - Harumi Gomi
- Center for Infectious Diseases, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita City, Chiba 286-8520, Japan
- Office of Medical Education, International University of Health and Welfare School of Medicine, 4-3, Kozunomori, Narita, Chiba 286-8686, Japan
| | - Saho Takaya
- Center for Infectious Diseases, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita City, Chiba 286-8520, Japan
| | - Yasuyuki Kato
- Center for Infectious Diseases, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita City, Chiba 286-8520, Japan
| | - Takashi Shiga
- Department of Emergency Medicine, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita City, Chiba 286-8520, Japan
| |
Collapse
|
13
|
Mercado-Hernandez R, Myers R, Carillo FB, Zambrana JV, López B, Sanchez N, Gordon A, Balmaseda A, Kuan G, Harris E. Obesity is associated with increased pediatric dengue virus infection and disease: A 9-year cohort study in Managua, Nicaragua. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.02.24305219. [PMID: 38633790 PMCID: PMC11023673 DOI: 10.1101/2024.04.02.24305219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Background Obesity is on the rise globally in adults and children, including in tropical areas where diseases such as dengue have a substantial burden, particularly in children. Obesity impacts the risk of severe dengue disease; however, the impact on dengue virus (DENV) infection and dengue cases remains an open question. Methods We used 9 years of data from 5,940 children in the Pediatric Dengue Cohort Study in Nicaragua to examine whether pediatric obesity is associated with increased susceptibility to DENV infection and symptomatic presentation. Analysis was performed using Generalized Estimating Equations adjusted for age, sex, and pre-infection DENV antibody titers. Results From 2011 to 2019, children contributed 26,273 person-years of observation, and we observed an increase in the prevalence of overweight (from 12% to 17%) and obesity (from 7% to 13%). There were 1,682 DENV infections and 476 dengue cases in the study population. Compared to participants with normal weight, participants with obesity had higher odds of DENV infection (Adjusted Odds Ratio [aOR] 1.21, 95% confidence interval [CI] 1.03-1.42) and higher odds of dengue disease given infection (aOR 1.59, 95% CI 1.15-2.19). Children with obesity infected with DENV showed increased odds of presenting fever (aOR 1.46, 95% CI 1.05-2.02), headache (aOR 1.51, 95% CI 1.07-2.14), and rash (aOR 2.26, 95% CI 1.49-3.44) when compared with children with normal weight. Conclusions Our results indicate that obesity is associated with increased susceptibility to DENV infection and dengue cases in children, independently of age, sex, and pre-infection DENV antibody titers.
Collapse
Affiliation(s)
- Reinaldo Mercado-Hernandez
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Rachel Myers
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Fausto Bustos Carillo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - José Victor Zambrana
- Sustainable Sciences Institute, Managua, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Brenda López
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
14
|
Bohm BC, Morais MHF, Cunha MDCM, Bruhn NCP, Caiaffa WT, Bruhn FRP. Determining the relationship between dengue and vulnerability in a Brazilian city: a spatial modeling analysis. Pathog Glob Health 2024; 118:120-130. [PMID: 37602571 PMCID: PMC11141313 DOI: 10.1080/20477724.2023.2247273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Dengue is a viral infection transmitted by the Aedes aegypti mosquito. This study aimed to assess the distribution of cases and deaths from dengue and severe dengue, and its relationship with social vulnerability in Belo Horizonte, State of Minas Gerais, Brazil, from 2010 to 2018. The incidence and lethality rates of dengue and their relationship with sex, age, education, skin color, and social vulnerability were studied using chi-square tests, Ordinary Least Squares (OLS), and Geographically Weighted Regression (GWR) analyses. The number of cases of dengue in Belo Horizonte during the study period was 324,044 dengue cases, with 1,334 cases of severe dengue and 88 deaths. During the past few decades, the incidence rate of both dengue and severe cases varied, with an average incidence rate of respectively 1515.5 and 6.2/100,000 inhabitants. The increase in dengue cases was directly related to areas with higher social vulnerability areas and more working-age people. Also, the disease is more severe in people self-declared as black, elderly, and male. The findings of this study might provide relevant information for health services in the organization of control and prevention policies for this problem, emphasizing the most vulnerable urban areas and categories.
Collapse
Affiliation(s)
- Bianca Conrad Bohm
- Veterinary Epidemiology Laboratory, Preventive Veterinary Department, Federal University of Pelotas (UFPel), Pelotas, Brazil
| | | | | | | | - Waleska Teixeira Caiaffa
- Urban Health Observatory - Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fábio Raphael Pascoti Bruhn
- Preventive Veterinary Department, Zoonoses Control Center (UFPel), Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
15
|
Coelho SVA, Augusto FM, de Arruda LB. Potential Pathways and Pathophysiological Implications of Viral Infection-Driven Activation of Kallikrein-Kinin System (KKS). Viruses 2024; 16:245. [PMID: 38400022 PMCID: PMC10892958 DOI: 10.3390/v16020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Microcirculatory and coagulation disturbances commonly occur as pathological manifestations of systemic viral infections. Research exploring the role of the kallikrein-kinin system (KKS) in flavivirus infections has recently linked microvascular dysfunctions to bradykinin (BK)-induced signaling of B2R, a G protein-coupled receptor (GPCR) constitutively expressed by endothelial cells. The relevance of KKS activation as an innate response to viral infections has gained increasing attention, particularly after the reports regarding thrombogenic events during COVID-19. BK receptor (B2R and B1R) signal transduction results in vascular permeability, edema formation, angiogenesis, and pain. Recent findings unveiling the role of KKS in viral pathogenesis include evidence of increased activation of KKS with elevated levels of BK and its metabolites in both intravascular and tissue milieu, as well as reports demonstrating that virus replication stimulates BKR expression. In this review, we will discuss the mechanisms triggered by virus replication and by virus-induced inflammatory responses that may stimulate KKS. We also explore how KKS activation and BK signaling may impact virus pathogenesis and further discuss the potential therapeutic application of BKR antagonists in the treatment of hemorrhagic and respiratory diseases.
Collapse
Affiliation(s)
- Sharton Vinícius Antunes Coelho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | | | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
16
|
Hossain KA, Akhter R, Rashid MHO, Akter L, Utsunomiya M, Kitab B, Ngwe Tun MM, Hishiki T, Kohara M, Morita K, Tsukiyama-Kohara K. Suppression of dengue virus replication by the French maritime pine extract Pycnogenol®. Virus Res 2024; 339:199244. [PMID: 37832653 PMCID: PMC10613901 DOI: 10.1016/j.virusres.2023.199244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Dengue virus (DENV) is mainly found in the tropics and infects approximately 400 million people annually. However, no clinically available therapeutic agents specific to dengue have been developed. Here, we examined the potential antiviral effects of the French maritime pine extract Pycnogenol® (PYC) against DENV because we previously found that the extract exerts antiviral effects on hepatitis C virus, which belongs to the Flavivirus family. First, we examined the efficacy of PYC against DENV1, 2, 3, and 4 serotypes and determined that it had a dose-dependent suppressive effect on the viral load, especially in the supernatant. This inhibitory effect of PYC may target the late stages of infection such as maturation and secretion, but not replication. Next, we examined the efficacy of PYC against DENV infection in type I interferon (IFN) receptor knockout mice (A129). As the propagation of DENV2 was the highest among the four serotypes, we used this serotype in our murine model experiments. We found that PYC significantly inhibited DENV2 replication in mice on day 4 without significantly decreasing body weight or survival ratio. We further examined the mechanism of action of PYC in DENV2 infection by characterizing the main PYC targets among the host (viral) factors and silencing them using siRNA. Silencing long noncoding-interferon-induced protein (lnc-IFI)-44, polycystic kidney disease 1-like 3 (Pkd1l3), and ubiquitin-specific peptidase 31 (Usp31) inhibited the replication of DENV2. Thus, the results of this study shed light on the inhibitory effects of PYC on DENV replication and its underlying mechanisms.
Collapse
Affiliation(s)
- Kazi Anowar Hossain
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Rupaly Akhter
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Md Haroon Or Rashid
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Lipi Akter
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Masashi Utsunomiya
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Bouchra Kitab
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Takayuki Hishiki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
17
|
Zambrana JV, Hasund CM, Aogo RA, Bos S, Arguello S, Gonzalez K, Collado D, Miranda T, Kuan G, Gordon A, Balmaseda A, Katzelnick L, Harris E. Primary exposure to Zika virus increases risk of symptomatic dengue virus infection with serotypes 2, 3, and 4 but not serotype 1. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.29.23299187. [PMID: 38077039 PMCID: PMC10705633 DOI: 10.1101/2023.11.29.23299187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Infection with any of the four dengue virus serotypes (DENV1-4) can protect against or enhance subsequent dengue depending on pre-existing antibodies and the subsequent infecting serotype. Additionally, primary infection with the related flavivirus Zika virus (ZIKV) has been shown to increase DENV2 disease. Here, we measured how prior DENV and ZIKV immunity influenced risk of disease caused by all four serotypes in a pediatric Nicaraguan cohort. Of 3,412 participants in 2022, 10.6% experienced symptomatic DENV infections caused by DENV1 (n=139), DENV4 (n=133), DENV3 (n=54), DENV2 (n=9), or an undetermined serotype (n=39). Longitudinal clinical and serological data were used to define infection histories, and generalized linear and additive models adjusted for age, sex, time since the last infection, cohort year, and repeat measurements were used to predict disease risk. Compared to flavivirus-naïve participants, primary ZIKV infection increased disease risk of DENV4 (relative risk = 2.62, 95% confidence interval: 1.48-4.63) and DENV3 (2.90, 1.34-6.27) but not DENV1 (1.20, 0.72-1.99). Primary DENV infection or a DENV followed by ZIKV infection also increased DENV4 risk. We re-analyzed 19 years of cohort data and demonstrated that prior flavivirus-immunity and pre-existing antibody titer differentially affected disease risk for incoming serotypes, increasing risk of DENV2 and DENV4, protecting against DENV1, and protecting at high titers but enhancing at low titers against DENV3. We thus find that prior ZIKV infection, like prior DENV infection, increases risk of certain DENV serotypes. Cross-reactivity among flaviviruses should be carefully considered when assessing vaccine safety and efficacy.
Collapse
Affiliation(s)
- Jose Victor Zambrana
- Sustainable Sciences Institute; Managua, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan; Ann Arbor, MI, USA
| | - Chloe M. Hasund
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; MD, USA
| | - Rosemary A. Aogo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; MD, USA
| | - Sandra Bos
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley; Berkeley, CA, USA
| | | | - Karla Gonzalez
- Sustainable Sciences Institute; Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud; Managua, Nicaragua
| | | | | | - Guillermina Kuan
- Sustainable Sciences Institute; Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud; Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan; Ann Arbor, MI, USA
| | - Angel Balmaseda
- Sustainable Sciences Institute; Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud; Managua, Nicaragua
| | - Leah Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; MD, USA
| | - Eva Harris
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley; Berkeley, CA, USA
| |
Collapse
|
18
|
Aogo RA, Zambrana JV, Sanchez N, Ojeda S, Kuan G, Balmaseda A, Gordon A, Harris E, Katzelnick LC. Effects of boosting and waning in highly exposed populations on dengue epidemic dynamics. Sci Transl Med 2023; 15:eadi1734. [PMID: 37967199 PMCID: PMC11001200 DOI: 10.1126/scitranslmed.adi1734] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Sequential infection with multiple dengue virus (DENV) serotypes is thought to induce enduring protection against dengue disease. However, long-term antibody waning has been observed after repeated DENV infection. Here, we provide evidence that highly immune Nicaraguan children and adults (n = 4478) experience boosting and waning of antibodies during and after major Zika and dengue epidemics. We develop a susceptible-infected-recovered-susceptible (SIRS-type) model that tracks immunity by titer rather than number of infections to show that boosts in highly immune individuals can contribute to herd immunity, delaying their susceptibility to transmissible infection. In contrast, our model of lifelong immunity in highly immune individuals, as previously assumed, results in complete disease eradication after introduction. Periodic epidemics under this scenario can only be sustained with a constant influx of infected individuals into the population or a high basic reproductive number. We also find that Zika virus infection can boost DENV immunity and produce delays and then surges in dengue epidemics, as observed with real epidemiological data. This work provides insight into factors shaping periodicity in dengue incidence and may inform vaccine efforts to maintain population immunity.
Collapse
Affiliation(s)
- Rosemary A. Aogo
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| | - Jose Victor Zambrana
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, 12014, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, 14007, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, 16064, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| |
Collapse
|
19
|
Mosquera-Sulbaran JA, Pedreañez A, Hernandez-Fonseca JP, Hernandez-Fonseca H. Angiotensin II and dengue. Arch Virol 2023; 168:191. [PMID: 37368044 DOI: 10.1007/s00705-023-05814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Dengue is a disease caused by a flavivirus that is transmitted principally by the bite of an Aedes aegypti mosquito and represents a major public-health problem. Many studies have been carried out to identify soluble factors that are involved in the pathogenesis of this infection. Cytokines, soluble factors, and oxidative stress have been reported to be involved in the development of severe disease. Angiotensin II (Ang II) is a hormone with the ability to induce the production of cytokines and soluble factors related to the inflammatory processes and coagulation disorders observed in dengue. However, a direct involvement of Ang II in this disease has not been demonstrated. This review primarily summarizes the pathophysiology of dengue, the role of Ang II in various diseases, and reports that are highly suggestive of the involvement of this hormone in dengue.
Collapse
Affiliation(s)
- Jesus A Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela.
| | - Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela
- Servicio de Microscopia Electronica del Centro Nacional de Biotecnologia (CNB- CSIC) Madrid, Madrid, España
| | - Hugo Hernandez-Fonseca
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, Saint George's University, True Blue, West Indies, Grenada
| |
Collapse
|
20
|
Tissera H, Dheerasinghe DSAF, Malavige N, de Silva HA, Morrison AC, Scott TW, Reiner RC, Grieco JP, Achee NL. A cluster-randomized, placebo-controlled trial to evaluate the efficacy of a spatial repellent (Mosquito Shield™) against Aedes-borne virus infection among children ≥ 4-16 years of age in the Gampaha District, Sri Lanka: study protocol (the AEGIS program). Trials 2023; 24:9. [PMID: 36600308 PMCID: PMC9811041 DOI: 10.1186/s13063-022-06998-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Spatial repellents (SRs) have been widely used for prevention of mosquito bites, but their efficacy in reducing Aedes-borne viruses (ABV) has not been tested rigorously at large scale in Asia. To address this knowledge gap, a trial to evaluate the efficacy of Mosquito Shield™, a transfluthrin SR, was developed in Gampaha District of Sri Lanka across three Medical Officer of Health areas; i.e., Negombo, Wattala, and Kelaniya. METHODS This trial is a cluster-randomized, placebo-controlled, double-blinded clinical trial. A total of ~14,430 subjects aged ≥ 6 months in 30 clusters (15 intervention, 15 placebo) from ~3900 households (HH) will be randomly selected for enrolment into a "febrile surveillance cohort." A subset of the surveillance cohort, ~3570 subjects aged ≥4-16 years that test seronegative (naïve) or are serologically positive for a previous single dengue virus (DENV) infection (monotypic) at baseline sampling, will be enrolled into a "longitudinal cohort" for measuring DENV infection based on laboratory-confirmed seroconversion during the trial. Persons identified positive for antibodies against multiple DENV serotypes (multitypic) at baseline will be monitored for secondary analyses. Active ABV disease will be assessed using an enhanced passive surveillance system with case ascertainment performed in designated healthcare facilities. Serum samples will be taken from longitudinal cohort subjects within 1-2 weeks of when intervention is first deployed (T0) with additional samples taken ~12 (T1) and ~24 months (T2) from baseline sampling. DENV seroconversion and ABV active disease rates from baseline (pre-intervention) and follow-up (post-intervention) samples will be compared between intervention and placebo clusters. Participating houses will be monitored entomologically (indoor adult Aedes aegypti population densities and adult female blood fed status) within 3 months before intervention deployment and monthly during the intervention phase. Entomological surveys will monitor indoor adult Ae. aegypti population densities and blood fed status. Dengue incidence in each cohort will be estimated and compared to determine the public health benefit of using an SR. Entomological parameters will be measured to determine if there are entomological correlates of SR efficacy that may be useful for the evaluation of new SR products. DISCUSSION The trial will serve as an efficacy assessment of SR products in South Asia. Results will be submitted to the World Health Organization Vector Control Advisory Group for assessment of public health value towards an endorsement to recommend inclusion of SRs in ABV control programs. TRIAL REGISTRATION Sri Lanka Clinical Trial Registry SLCTR /2022/018. Registered on July 1, 2022. CLINICALTRIALS gov NCT05452447 . Registered on July 11, 2022. The Universal Trial Number is U1111-1275-3055.
Collapse
Affiliation(s)
- Hasitha Tissera
- grid.466905.8Epidemiology Unit, Ministry of Health, Colombo, Sri Lanka
| | | | - Neelika Malavige
- grid.267198.30000 0001 1091 4496Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - H. Asita de Silva
- grid.45202.310000 0000 8631 5388Clinical Trials Unit, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Amy C. Morrison
- grid.27860.3b0000 0004 1936 9684University of California Davis, Davis, CA USA
| | - Thomas W. Scott
- grid.27860.3b0000 0004 1936 9684University of California Davis, Davis, CA USA
| | - Robert C. Reiner
- grid.34477.330000000122986657University of Washington, Seattle, WA USA
| | - John P. Grieco
- grid.131063.60000 0001 2168 0066Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, 243 Galvin Life Science Center, Notre Dame, IN 46556 USA
| | - Nicole L. Achee
- grid.131063.60000 0001 2168 0066Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, 243 Galvin Life Science Center, Notre Dame, IN 46556 USA
| |
Collapse
|
21
|
Kayesh MEH, Khalil I, Kohara M, Tsukiyama-Kohara K. Increasing Dengue Burden and Severe Dengue Risk in Bangladesh: An Overview. Trop Med Infect Dis 2023; 8:tropicalmed8010032. [PMID: 36668939 PMCID: PMC9866424 DOI: 10.3390/tropicalmed8010032] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Dengue is a prevalent and rapidly spreading mosquito-borne viral disease affecting humans. The geographic range of dengue is expanding, and much like in many other tropical regions of the world, dengue has become a major public health issue in Bangladesh. Until a large epidemic dengue outbreak in 2000, sporadic outbreaks have occurred in Bangladesh since 1964. After 2000, varying intensities of dengue activity were observed each year until 2018. However, in 2019, Bangladesh experienced the largest dengue epidemic in its history, with 101,354 dengue cases and 164 dengue-related deaths. Notably, this outbreak occurred in many regions that were previously considered free of the disease. As of 10 December 2022, a total of 60,078 dengue cases and 266 dengue-related deaths were reported in Bangladesh, with the 2022 outbreak being the second largest since 2000. There is an increased genetic diversity of the dengue virus (DENV) in Bangladesh and all four DENV serotypes are prevalent and co-circulating, which increases the risk for severe dengue owing to the antibody-dependent enhancement effect. Vector control remains the mainstay of dengue outbreak prevention; however, the vector control programs adopted in Bangladesh seem inadequate, requiring improved vector control strategies. In this review, we provide an overview of the epidemiology of DENV infection and the risks for a severe dengue outbreak in Bangladesh. Additionally, we discuss different dengue vector control strategies, from which the most suitable and effective measures can be applied in the context of Bangladesh for tackling future dengue epidemics.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
- Correspondence: (M.E.H.K.); (K.T.-K.); Tel.: +88-025-506-1677 (M.E.H.K.); +81-99-285-3589 (K.T.-K.)
| | - Ibrahim Khalil
- Department of Livestock Services, Ministry of Fisheries & Livestock, Government of the Peoples Republic of Bangladesh, Dhaka 1215, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: (M.E.H.K.); (K.T.-K.); Tel.: +88-025-506-1677 (M.E.H.K.); +81-99-285-3589 (K.T.-K.)
| |
Collapse
|
22
|
Paz-Bailey G, Sánchez-González L, Torres-Velasquez B, Jones ES, Perez-Padilla J, Sharp TM, Lorenzi O, Delorey M, Munoz-Jordan JL, Tomashek KM, Waterman SH, Alvarado LI, Rivera-Amill V. Predominance of Severe Plasma Leakage in Pediatric Patients With Severe Dengue in Puerto Rico. J Infect Dis 2022; 226:1949-1958. [PMID: 35510941 PMCID: PMC10015274 DOI: 10.1093/infdis/jiac165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/28/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We evaluated clinical and laboratory findings among patients with nonsevere or severe dengue in Puerto Rico to examine whether clinical manifestations vary by age. METHODS During 2012-2014, we enrolled patients who arrived at the emergency department with fever or history of fever within 7 days of presentation. Serum samples were tested for dengue virus (DENV) by reverse transcriptase-polymerase chain reaction (RT-PCR) and IgM enzyme-linked immunosorbent assay (ELISA). Severe dengue was defined as severe plasma leakage or shock, severe bleeding, or organ involvement at presentation, during hospitalization, or follow-up. RESULTS Of 1089 dengue patients identified, 281 (26%) were severe. Compared to those with nonsevere dengue, patients with severe dengue were more often aged 10-19 years (55% vs 40%, P < .001) and hospitalized (87% vs 30%, P < .001). Severe plasma leakage or shock was more common among children aged 0-9 (59%) or 10-19 years (86%) than adults (49%) (P < .01). Severe bleeding was less common among 10-19 year olds (24%) compared to 0-9 year olds (45%) and adults (52%; P < .01). CONCLUSIONS Severe plasma leakage was the most common presentation among children, highlighting important differences from adults. Vaccination against dengue could help prevent severe dengue among children in Puerto Rico.
Collapse
Affiliation(s)
| | | | | | - Emma S Jones
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | | | - Tyler M Sharp
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
- US Public Health Service, Rockville, Maryland, USA
| | - Olga Lorenzi
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Mark Delorey
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | | | - Kay M Tomashek
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
- US Public Health Service, Rockville, Maryland, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen H Waterman
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
- US Public Health Service, Rockville, Maryland, USA
| | - Luisa I Alvarado
- Ponce Health Sciences University/Ponce Research Institute, Ponce, Puerto Rico
| | | |
Collapse
|
23
|
The Efficacy of the Traditional Thai Remedy “Ya-Ha-Rak” against Dengue Virus Type 2. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Yu X, Cheng G. Adaptive Evolution as a Driving Force of the Emergence and Re-Emergence of Mosquito-Borne Viral Diseases. Viruses 2022; 14:v14020435. [PMID: 35216028 PMCID: PMC8878277 DOI: 10.3390/v14020435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Emerging and re-emerging mosquito-borne viral diseases impose a significant burden on global public health. The most common mosquito-borne viruses causing recent epidemics include flaviviruses in the family Flaviviridae, including Dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile virus (WNV) and Togaviridae viruses, such as chikungunya virus (CHIKV). Several factors may have contributed to the recent re-emergence and spread of mosquito-borne viral diseases. Among these important causes are the evolution of mosquito-borne viruses and the genetic mutations that make them more adaptive and virulent, leading to widespread epidemics. RNA viruses tend to acquire genetic diversity due to error-prone RNA-dependent RNA polymerases, thus promoting high mutation rates that support adaptation to environmental changes or host immunity. In this review, we discuss recent findings on the adaptive evolution of mosquito-borne viruses and their impact on viral infectivity, pathogenicity, vector fitness, transmissibility, epidemic potential and disease emergence.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
25
|
Cunha MDCM, Ju Y, Morais MHF, Dronova I, Ribeiro SP, Bruhn FRP, Lima LL, Sales DM, Schultes OL, Rodriguez DA, Caiaffa WT. Disentangling associations between vegetation greenness and dengue in a Latin American city: Findings and challenges. LANDSCAPE AND URBAN PLANNING 2021; 216:None. [PMID: 34675450 PMCID: PMC8519391 DOI: 10.1016/j.landurbplan.2021.104255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 05/07/2023]
Abstract
Being a Re-Emerging Infectious Disease, dengue causes 390 million cases globally and is prevalent in many urban areas in South America. Understanding the fine-scale relationships between dengue incidence and environmental and socioeconomic factors can guide improved disease prevention strategies. This ecological study examines the association between dengue incidence and satellite-based vegetation greenness in 3826 census tracts nested in 474 neighborhoods in Belo Horizonte, Brazil, during the 2010 dengue epidemic. To reduce potential bias in the estimated dengue-greenness association, we adjusted for socioeconomic vulnerability, population density, building height and density, land cover composition, elevation, weather patterns, and neighborhood random effects. We found that vegetation greenness was negatively associated with dengue incidence in a univariate model, and this association attenuated after controlling for additional covariates. The dengue-greenness association was modified by socioeconomic vulnerability: while a positive association was observed in the least vulnerable census tracts, the association was negative in the most vulnerable areas. Using greenness as a proxy for vegetation quality, our results show the potential of vegetation management in reducing dengue incidence, particularly in socioeconomically vulnerable areas. We also discuss the role of water infrastructure, sanitation services, and tree cover in lowering dengue risk.
Collapse
Affiliation(s)
- Maria da Consolação Magalhães Cunha
- Observatory for Urban health in Belo Horizonte, School of Medicine, Federal University of Minas Gerais, Brazil
- Pontifical Catholic University of Minas Gerais, Brazil
| | - Yang Ju
- Institute of Urban and Regional Development, University of California, 316 Wurster Hall, University of California, Berkeley, Berkeley, CA 94720, USA
- Corresponding author.
| | | | - Iryna Dronova
- Department of Environmental Science, Policy, and Management, Department of Landscape Architecture and Environmental Planning, University of California, Berkeley, USA
| | - Sérvio Pontes Ribeiro
- Laboratory of Ecology of Diseases and Forests, Nucleous of Biology/NUPEB and Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Brazil
| | | | - Larissa Lopes Lima
- Observatory for Urban health in Belo Horizonte, School of Medicine, Federal University of Minas Gerais, Brazil
- Federal Center for Technological Education of Minas Gerais, Brazil
| | - Denise Marques Sales
- Observatory for Urban health in Belo Horizonte, School of Medicine, Federal University of Minas Gerais, Brazil
| | - Olivia Lang Schultes
- Observatory for Urban health in Belo Horizonte, School of Medicine, Federal University of Minas Gerais, Brazil
| | - Daniel A. Rodriguez
- Department of City and Regional Planning and Institute of Transportation Studies, University of California, Berkeley, USA
| | - Waleska Teixeira Caiaffa
- Observatory for Urban health in Belo Horizonte, School of Medicine, Federal University of Minas Gerais, Brazil
| |
Collapse
|
26
|
Mammalian animal models for dengue virus infection: a recent overview. Arch Virol 2021; 167:31-44. [PMID: 34761286 PMCID: PMC8579898 DOI: 10.1007/s00705-021-05298-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023]
Abstract
Dengue, a rapidly spreading mosquito-borne human viral disease caused by dengue virus (DENV), is a public health concern in tropical and subtropical areas due to its expanding geographical range. DENV can cause a wide spectrum of illnesses in humans, ranging from asymptomatic infection or mild dengue fever (DF) to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Dengue is caused by four DENV serotypes; however, dengue pathogenesis is complex and poorly understood. Establishing a useful animal model that can exhibit dengue-fever-like signs similar to those in humans is essential to improve our understanding of the host response and pathogenesis of DENV. Although several animal models, including mouse models, non-human primate models, and a recently reported tree shrew model, have been investigated for DENV infection, animal models with clinical signs that are similar to those of DF in humans have not yet been established. Although animal models are essential for understanding the pathogenesis of DENV infection and for drug and vaccine development, each animal model has its own strengths and limitations. Therefore, in this review, we provide a recent overview of animal models for DENV infection and pathogenesis, focusing on studies of the antibody-dependent enhancement (ADE) effect in animal models.
Collapse
|
27
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Recent Insights Into the Molecular Mechanism of Toll-Like Receptor Response to Dengue Virus Infection. Front Microbiol 2021; 12:744233. [PMID: 34603272 PMCID: PMC8483762 DOI: 10.3389/fmicb.2021.744233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue is the most prevalent and rapidly spreading mosquito-borne viral disease caused by dengue virus (DENV). Recently, DENV has been affecting humans within an expanding geographic range due to the warming of the earth. Innate immune responses play a significant role in antiviral defense, and Toll-like receptors (TLRs) are key regulators of innate immunity. Therefore, a detailed understanding of TLR and DENV interactions is important for devising therapeutic and preventive strategies. Several studies have indicated the ability of DENV to modulate the TLR signaling pathway and host immune response. Vaccination is considered one of the most successful medical interventions for preventing viral infections. However, only a partially protective dengue vaccine, the first licensed dengue vaccine CYD-TDV, is available in some dengue-endemic countries to protect against DENV infection. Therefore, the development of a fully protective, durable, and safe DENV vaccine is a priority for global health. Here, we demonstrate the progress made in our understanding of the host response to DENV infection, with a particular focus on TLR response and how DENV avoids the response toward establishing infection. We also discuss dengue vaccine candidates in late-stage development and the issues that must be overcome to enable their success.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
28
|
Correlation of serotype-specific strain in patients with dengue virus infection with neurological manifestations and its outcome. Neurol Sci 2021; 43:1939-1946. [PMID: 34338929 DOI: 10.1007/s10072-021-05477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Neurological manifestation of dengue virus infection is a rare entity. Serotypes commonly associated with neurological manifestation are DENV-2 and DENV-3. We plan to detect the serotypes related to the neurological presentation in dengue infection and its correlation with different neurological complications and outcome. METHODS In this case-control study, consecutive dengue cases with different neurological manifestations were enrolled along with age and sex-matched controls (dengue patients without neurological complication). Serotyping using RT-PCR of samples of cases and controls were done. Level of correlation was analyzed with various parameters and outcomes. RESULTS In cases out of 33 samples, 6 sample serotypes were detected, which were composed of DENV-1 (n = 2) and DENV-2 (n = 4). In controls, DENV-1 (n = 5), DENV-2 (n = 6), and DENV-3 (n = 3) were detected. When statistically correlated, no significant association was found in cases and controls with dengue virus serotype. The frequency of serotype 2 was higher in hypokalemic paralysis cases than non-hypokalemic paralysis cases and the difference was significant (p < 0.05). The outcome was good (mRS < 3) in all the cases where serotypes were detected, but on statistical correlation, it was not found significant (p > 0.05). CONCLUSION DENV-1 and DENV-2 are associated with neurological manifestation of dengue infection, which is different from the existing literature, where DENV-2 and DENV-3 are reported. The detection of DENV serotype will help in predicting and best management of neurological complication. The serotype 2 of dengue virus is more commonly associated with dengue-associated hypokalemic paralysis than other neurological complication (p < 0.05). There is no significant association of serotypes with outcome or mortality.
Collapse
|
29
|
Avula K, Singh B, Kumar PV, Syed GH. Role of Lipid Transfer Proteins (LTPs) in the Viral Life Cycle. Front Microbiol 2021; 12:673509. [PMID: 34248884 PMCID: PMC8260984 DOI: 10.3389/fmicb.2021.673509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses are obligate parasites that depend on the host cell machinery for their replication and dissemination. Cellular lipids play a central role in multiple stages of the viral life cycle such as entry, replication, morphogenesis, and egress. Most viruses reorganize the host cell membranes for the establishment of viral replication complex. These specialized structures allow the segregation of replicating viral RNA from ribosomes and protect it from host nucleases. They also facilitate localized enrichment of cellular components required for viral replication and assembly. The specific composition of the lipid membrane governs its ability to form negative or positive curvature and possess a rigid or flexible form, which is crucial for membrane rearrangement and establishment of viral replication complexes. In this review, we highlight how different viruses manipulate host lipid transfer proteins and harness their functions to enrich different membrane compartments with specific lipids in order to facilitate multiple aspects of the viral life cycle.
Collapse
Affiliation(s)
- Kiran Avula
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Bharati Singh
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | - Preethy V Kumar
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | - Gulam H Syed
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India
| |
Collapse
|
30
|
Loaiza-Cano V, Monsalve-Escudero LM, Filho CDSMB, Martinez-Gutierrez M, de Sousa DP. Antiviral Role of Phenolic Compounds against Dengue Virus: A Review. Biomolecules 2020; 11:biom11010011. [PMID: 33374457 PMCID: PMC7823413 DOI: 10.3390/biom11010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Phenolic compounds have been related to multiple biological activities, and the antiviral effect of these compounds has been demonstrated in several viral models of public health concern. In this review, we show the antiviral role of phenolic compounds against dengue virus (DENV), the most widespread arbovirus globally that, after its re-emergence, has caused multiple epidemic outbreaks, especially in the last two years. Twenty phenolic compounds with anti-DENV activity are discussed, including the multiple mechanisms of action, such as those directed against viral particles or viral proteins, host proteins or pathways related to the productive replication viral cycle and the spread of the infection.
Collapse
Affiliation(s)
- Vanessa Loaiza-Cano
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
| | - Laura Milena Monsalve-Escudero
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
| | | | - Marlen Martinez-Gutierrez
- Grupo de Investigacion en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680003 Bucaramanga, Colombia; (V.L.-C.); (L.M.M.-E.)
- Correspondence: (M.M.-G.); (D.P.d.S.); Tel.: +57-310-543-8583 (M.M.-G.); +55-833-216-7347 (D.P.d.S.)
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, CEP 58051-970 João Pessoa, PB, Brazil;
- Correspondence: (M.M.-G.); (D.P.d.S.); Tel.: +57-310-543-8583 (M.M.-G.); +55-833-216-7347 (D.P.d.S.)
| |
Collapse
|
31
|
Evolution and epidemiologic dynamics of dengue virus in Nicaragua during the emergence of chikungunya and Zika viruses. INFECTION GENETICS AND EVOLUTION 2020; 92:104680. [PMID: 33326875 DOI: 10.1016/j.meegid.2020.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022]
Abstract
Arthropod-borne viruses (arboviruses) comprise a significant and ongoing threat to human health, infecting hundreds of millions annually. Three such arboviruses include circumtropical dengue, Zika, and chikungunya viruses, exhibiting continuous emergence primarily via Aedes mosquito vectors. Nicaragua has experienced endemic dengue virus (DENV) transmission involving multiple serotypes since 1985, with chikungunya virus (CHIKV) reported in 2014-2015, followed by Zika virus (ZIKV) first reported in 2016. In order to identify patterns of genetic variation and selection pressures shaping the evolution of co-circulating DENV serotypes in light of the arrival of CHIKV and ZIKV, we employed whole-genome sequencing on an Illumina MiSeq platform of random-amplified total RNA libraries to characterize 42 DENV low-passage isolates, derived from viremic patients in Nicaragua between 2013 and 2016. Our approach also revealed clinically undetected co-infections with CHIKV. Of the three DENV serotypes (1, 2, and 3) co-circulating during our study, we uncovered distinct patterns of evolution using comparative phylogenetic inference. DENV-1 genetic variation was structured into two distinct co-circulating lineages with no evidence of positive selection in the origins of either lineage, suggesting they are equally fit. In contrast, the evolutionary history of DENV-2 was marked by positive selection, and a unique, divergent lineage correlated with high epidemic potential emerged in 2015 to drive an outbreak in 2016. DENV-3 genetic variation remained unstructured into lineages throughout the period of study. Thus, this study reveals insights into evolutionary and epidemiologic trends exhibited during the circulation of multiple arboviruses in Nicaragua.
Collapse
|
32
|
de Morais PLL, Castanha PMS, Montarroyos UR. Incidence and spatial distribution of cases of dengue, from 2010 to 2019: an ecological study. SAO PAULO MED J 2020; 138:554-560. [PMID: 33331605 PMCID: PMC9685579 DOI: 10.1590/1516-3180.2020.0111.r1.24092020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Dengue is an arbovirus that has caused serious problem in Brazil, putting the public health system under severe stress. Understanding its incidence and spatial distribution is essential for disease control and prevention. OBJECTIVE To perform an analysis on dengue incidence and spatial distribution in a medium-sized, cool-climate and high-altitude city. DESIGN AND SETTING Ecological study carried out in a public institution in the city of Garanhuns, Pernambuco, Brazil. METHODS Secondary data provided by specific agencies in each area were used for spatial analysis and elaboration of kernel maps, incidence calculations, correlations and percentages of dengue occurrence. The Geocentric Reference System for the Americas (Sistema de Referência Geocêntrico para as Américas, SIRGAS), 2000, was the software of choice. RESULTS The incidence rates were calculated per 100,000 inhabitants. Between 2010 and 2019, there were 6,504 cases and the incidence was 474.92. From 2010 to 2014, the incidence was 161.46 for a total of 1,069 cases. The highest incidence occurred in the period from 2015 to 2019: out of a total of 5,435 cases, the incidence was 748.65, representing an increase of 485.97%. Population density and the interaction between two climatic factors, i.e. atypical temperature above 31 °C and relative humidity above 31.4%, contributed to the peak incidence of dengue, although these variables were not statistically significant (P > 0.05). CONCLUSION The dengue incidence levels and spatial distribution reflected virus and vector adjustment to the local climate. However, there was no correlation between climatic factors and occurrences of dengue in this city.
Collapse
Affiliation(s)
- Petrúcio Luiz Lins de Morais
- BSc. Assistant Professor, Department of Biological Sciences, Universidade de Pernambuco (UPE), Garanhuns (PE), Brazil.
| | - Priscila Mayrelle Silva Castanha
- MSc, PhD. Research Collaborator, School of Medical Sciences, Institute of Biological Sciences, Universidade de Pernambuco (UPE), Recife (PE), Brazil.
| | - Ulisses Ramos Montarroyos
- BSc. Adjunct Professor, School of Medical Sciences, Institute of Biological Sciences, Universidade de Pernambuco (UPE), Recife (PE), Brazil.
| |
Collapse
|
33
|
Andrade P, Narvekar P, Montoya M, Michlmayr D, Balmaseda A, Coloma J, Harris E. Primary and Secondary Dengue Virus Infections Elicit Similar Memory B-Cell Responses, but Breadth to Other Serotypes and Cross-Reactivity to Zika Virus Is Higher in Secondary Dengue. J Infect Dis 2020; 222:590-600. [PMID: 32193549 PMCID: PMC7377287 DOI: 10.1093/infdis/jiaa120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The 4 antigenically distinct serotypes of dengue virus (DENV) share extensive homology with each other and with the closely related Zika flavivirus (ZIKV). The development of polyclonal memory B cells (MBCs) to the 4 DENV serotypes and ZIKV during DENV infection is not fully understood. METHODS In this study, we analyzed polyclonal MBCs at the single-cell level from peripheral blood mononuclear cells collected ~2 weeks or 6-7 months postprimary or postsecondary DENV infection from a pediatric hospital-based study in Nicaragua using a Multi-Color FluoroSpot assay. RESULTS Dengue virus elicits robust type-specific and cross-reactive MBC responses after primary and secondary DENV infection, with a significantly higher cross-reactive response in both. Reactivity to the infecting serotype dominated the total MBC response. Although the frequency and proportion of type-specific and cross-reactive MBCs were comparable between primary and secondary DENV infections, within the cross-reactive response, the breadth of MBC responses against different serotypes was greater after secondary DENV infection. Dengue virus infection also induced cross-reactive MBC responses recognizing ZIKV, particularly after secondary DENV infection. CONCLUSIONS Overall, our study sheds light on the polyclonal MBC response to DENV and ZIKV in naive and DENV-preimmune subjects, with important implications for natural infections and vaccine development.
Collapse
Affiliation(s)
- Paulina Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Parnal Narvekar
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Magelda Montoya
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Daniela Michlmayr
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
34
|
Katzelnick LC, Ben-Shachar R, Mercado JC, Rodriguez-Barraquer I, Elizondo D, Arguello S, Nuñez A, Ojeda S, Sanchez N, Lopez Mercado B, Gresh L, Burger-Calderon R, Kuan G, Gordon A, Balmaseda A, Harris E. Dynamics and determinants of the force of infection of dengue virus from 1994 to 2015 in Managua, Nicaragua. Proc Natl Acad Sci U S A 2018; 115:10762-10767. [PMID: 30266790 PMCID: PMC6196493 DOI: 10.1073/pnas.1809253115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) is the most prevalent human vector-borne viral disease. The force of infection (FoI), the rate at which susceptible individuals are infected in a population, is an important metric for infectious disease modeling. Understanding how and why the FoI of DENV changes over time is critical for developing immunization and vector control policies. We used age-stratified seroprevalence data from 12 years of the Pediatric Dengue Cohort Study in Nicaragua to estimate the annual FoI of DENV from 1994 to 2015. Seroprevalence data revealed a change in the rate at which children acquire DENV-specific immunity: in 2004, 50% of children age >4 years were seropositive, but by 2015, 50% seropositivity was reached only by age 11 years. We estimated a spike in the FoI in 1997-1998 and 1998-1999 and a gradual decline thereafter, and children age <4 years experienced a lower FoI. Two hypotheses to explain the change in the FoI were tested: (i) a transition from introduction of specific DENV serotypes to their endemic transmission and (ii) a population demographic transition due to declining birth rates and increasing life expectancy. We used mathematical models to simulate these hypotheses. We show that the initial high FoI can be explained by the introduction of DENV-3 in 1994-1998, and that the overall gradual decline in the FoI can be attributed to demographic shifts. Changes in immunity and demographics strongly impacted DENV transmission in Nicaragua. Population-level measures of transmission intensity are dynamic and thus challenging to use to guide vaccine implementation locally and globally.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370
| | - Rotem Ben-Shachar
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Juan Carlos Mercado
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua 16064
- Sustainable Sciences Institute, Managua, Nicaragua 14007
| | | | | | - Sonia Arguello
- Sustainable Sciences Institute, Managua, Nicaragua 14007
| | - Andrea Nuñez
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua 16064
- Sustainable Sciences Institute, Managua, Nicaragua 14007
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua 14007
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua 14007
| | | | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua 14007
| | - Raquel Burger-Calderon
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370
- Sustainable Sciences Institute, Managua, Nicaragua 14007
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua 12014
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua 16064
- Sustainable Sciences Institute, Managua, Nicaragua 14007
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720-3370;
| |
Collapse
|
35
|
Salje H, Cummings DAT, Rodriguez-Barraquer I, Katzelnick LC, Lessler J, Klungthong C, Thaisomboonsuk B, Nisalak A, Weg A, Ellison D, Macareo L, Yoon IK, Jarman R, Thomas S, Rothman AL, Endy T, Cauchemez S. Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature 2018; 557:719-723. [PMID: 29795354 PMCID: PMC6064976 DOI: 10.1038/s41586-018-0157-4] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/24/2018] [Indexed: 11/25/2022]
Abstract
As with many pathogens, most dengue infections are subclinical and therefore unobserved1. Coupled with limited understanding of the dynamical behavior of potential serological markers of infection, this observational problem has wide-ranging implications, including hampering our understanding of individual- and population-level correlates of infection and disease risk and how they change over time, assay interpretation and cohort design. We develop a framework that simultaneously characterizes antibody dynamics and identifies subclinical infections via Bayesian augmentation from detailed cohort data (3,451 individuals with blood draws every 91 days, 143,548 hemagglutination inhibition assay titer measurements)2,3. We identify 1,149 infections (95% CI: 1,135–1,163) that were not detected by active surveillance and estimate that 65% of infections are subclinical. Post infection, individuals develop a stable setpoint antibody load after 1y that places them within or outside a risk window. Individuals with pre-existing titers of ≤1:40 develop hemorrhagic fever 7.4 (95% CI: 2.5–8.2) times as often as naïve individuals compared to 0.0 times for individuals with titers >1:40 (95% CI: 0.0–1.3). PRNT titers ≤1:100 were similarly associated with severe disease. Across the population, variability in the force of infection results in large-scale temporal changes in infection and disease risk that correlate poorly with age.
Collapse
Affiliation(s)
- Henrik Salje
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France. .,CNRS UMR2000, Génomique évolutive, modélisation et santé (GEMS), Institut Pasteur, Paris, France. .,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France. .,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Derek A T Cummings
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Biology, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | | | | | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Ananda Nisalak
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Alden Weg
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Damon Ellison
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Louis Macareo
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - In-Kyu Yoon
- International Vaccine Institute, Seoul, South Korea
| | - Richard Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stephen Thomas
- Department of Medicine, Upstate Medical University of New York, Syracuse, NY, USA
| | - Alan L Rothman
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, USA
| | - Timothy Endy
- Department of Medicine, Upstate Medical University of New York, Syracuse, NY, USA
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France.,CNRS UMR2000, Génomique évolutive, modélisation et santé (GEMS), Institut Pasteur, Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| |
Collapse
|
36
|
Renal manifestations of dengue virus infections. J Clin Virol 2018; 101:1-6. [DOI: 10.1016/j.jcv.2018.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 12/04/2017] [Accepted: 01/04/2018] [Indexed: 11/17/2022]
|
37
|
Djossou F, Vesin G, Elenga N, Demar M, Epelboin L, Walter G, Abboud P, Le-Guen T, Rousset D, Moreau B, Mahamat A, Malvy D, Nacher M. A predictive score for hypotension in patients with confirmed dengue fever in Cayenne Hospital, French Guiana. Trans R Soc Trop Med Hyg 2018; 110:705-713. [PMID: 28938048 DOI: 10.1093/trstmh/trx004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/26/2017] [Indexed: 11/12/2022] Open
Abstract
Background Identifying patients at risk of developing severe dengue is challenging. The objective of the present study was to determine the incidence of hypotension and its predictive factors during the Dengue 2 epidemic in 2013. Methods In 2013, a longitudinal study was performed using data from all confirmed cases of dengue seen in Cayenne General Hospital. The analysis used Cox proportional modeling to obtain adjusted hazards ratios for hypotension. Results A total of 806 confirmed patients were included 78 (9.6%) of whom developed hypotension. Extensive purpura, cutaneomucous hemorrhage, serous effusion and age 1-15 years were associated with subsequent hypotension whereas 'aches' and a rash were associated with a lower incidence of hypotension. The biological variables independently associated with hypotension were: increase of hematocrit, low protein concentrations, low sodium concentration and lymphocytes over 1400/ml. A risk score was computed from the scaled Cox model coefficient. Conclusions From a clinician's perspective, extensive purpura, cutaneomucous hemorrhage, serous effusion, age 1-15 years, hematocrit increase, low protein, low sodium, lymphocytosis and the absence of aches or of a rash, may be important warning signs to predict subsequent hypotension and shock. Over half of the patients with the highest risk score subsequently developed hypotension. The prognostic score had a 48.2% sensitivity with less than 10% of false positives. This score requires external validation before its impact on clinical practice is evaluated.
Collapse
Affiliation(s)
- Félix Djossou
- Department of Infectious and Tropical Diseases, Centre Hospitalier de Cayenne, 97300 Cayenne, French Guiana.,Equipe d'Accueil EA3593 Ecosystèmes Amazoniens et Pathologie Tropicale, Université de Guyane, 97300 Cayenne, French Guiana
| | - Guillaume Vesin
- Department of Infectious and Tropical Diseases, Centre Hospitalier de Cayenne, 97300 Cayenne, French Guiana
| | - Narcisse Elenga
- Department of Pediatrics, Centre Hospitalier de Cayenne, 97300 Cayenne, French Guiana
| | - Magalie Demar
- Equipe d'Accueil EA3593 Ecosystèmes Amazoniens et Pathologie Tropicale, Université de Guyane, 97300 Cayenne, French Guiana.,Laboratory of Parasitology and Mycology, Centre Hospitalier de Cayenne, 97300 Cayenne, French Guiana
| | - Loïc Epelboin
- Department of Infectious and Tropical Diseases, Centre Hospitalier de Cayenne, 97300 Cayenne, French Guiana.,Equipe d'Accueil EA3593 Ecosystèmes Amazoniens et Pathologie Tropicale, Université de Guyane, 97300 Cayenne, French Guiana
| | - Gaëlle Walter
- Department of Infectious and Tropical Diseases, Centre Hospitalier de Cayenne, 97300 Cayenne, French Guiana
| | - Philippe Abboud
- Department of Infectious and Tropical Diseases, Centre Hospitalier de Cayenne, 97300 Cayenne, French Guiana.,Equipe d'Accueil EA3593 Ecosystèmes Amazoniens et Pathologie Tropicale, Université de Guyane, 97300 Cayenne, French Guiana
| | - Thierry Le-Guen
- Service d'accueil des Urgences/Service d'aide médicale urgent, Centre Hospitalier de Cayenne, 97300 Cayenne, French Guiana
| | - Dominique Rousset
- Laboratoire de virologie, Institut Pasteur de la Guyane, 97300 Cayenne, French Guiana
| | - Brigitte Moreau
- Laboratoire de Bacteriologie Virologie, Centre Hospitalier de Cayenne, 97300 Cayenne, French Guiana
| | - Aba Mahamat
- Equipe Operationnelle d'Hygiene Hospitalière, Centre Hospitalier de Cayenne, 97300 Cayenne, French Guiana
| | - Denis Malvy
- Unité des Maladies Tropicales et du Voyageur, Centre Hospitalier Universitaire de Bordeaux, French Guiana
| | - Mathieu Nacher
- Equipe d'Accueil EA3593 Ecosystèmes Amazoniens et Pathologie Tropicale, Université de Guyane, 97300 Cayenne, French Guiana.,Centre d'Investigation Clinique Antilles Guyane, INSERM 1424, Centre Hospitalier de Cayenne, French Guiana
| |
Collapse
|
38
|
Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G, Gordon A, Balmaseda A, Harris E. Antibody-dependent enhancement of severe dengue disease in humans. Science 2017; 358:929-932. [PMID: 29097492 PMCID: PMC5858873 DOI: 10.1126/science.aan6836] [Citation(s) in RCA: 790] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 09/29/2017] [Indexed: 01/09/2023]
Abstract
For dengue viruses 1 to 4 (DENV1-4), a specific range of antibody titer has been shown to enhance viral replication in vitro and severe disease in animal models. Although suspected, such antibody-dependent enhancement of severe disease has not been shown to occur in humans. Using multiple statistical approaches to study a long-term pediatric cohort in Nicaragua, we show that risk of severe dengue disease is highest within a narrow range of preexisting anti-DENV antibody titers. By contrast, we observe protection from all symptomatic dengue disease at high antibody titers. Thus, immune correlates of severe dengue must be evaluated separately from correlates of protection against symptomatic disease. These results have implications for studies of dengue pathogenesis and for vaccine development, because enhancement, not just lack of protection, is of concern.
Collapse
Affiliation(s)
- Leah C. Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - M. Elizabeth Halloran
- Department of Biostatistics, University of Washington, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Juan Carlos Mercado
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
39
|
Grifoni A, Angelo MA, Lopez B, O'Rourke PH, Sidney J, Cerpas C, Balmaseda A, Silveira CGT, Maestri A, Costa PR, Durbin AP, Diehl SA, Phillips E, Mallal S, De Silva AD, Nchinda G, Nkenfou C, Collins MH, de Silva AM, Lim MQ, Macary PA, Tatullo F, Solomon T, Satchidanandam V, Desai A, Ravi V, Coloma J, Turtle L, Rivino L, Kallas EG, Peters B, Harris E, Sette A, Weiskopf D. Global Assessment of Dengue Virus-Specific CD4 + T Cell Responses in Dengue-Endemic Areas. Front Immunol 2017; 8:1309. [PMID: 29081779 PMCID: PMC5646259 DOI: 10.3389/fimmu.2017.01309] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/28/2017] [Indexed: 11/18/2022] Open
Abstract
Background Dengue is a major public health problem worldwide. Assessment of adaptive immunity is important to understanding immunopathology and to define correlates of protection against dengue virus (DENV). To enable global assessment of CD4+ T cell responses, we mapped HLA-DRB1-restricted DENV-specific CD4+ T cell epitopes in individuals previously exposed to DENV in the general population of the dengue-endemic region of Managua, Nicaragua. Methods HLA class II epitopes in the population of Managua were identified by an in vitro IFNγ ELISPOT assay. CD4+ T cells purified by magnetic bead negative selection were stimulated with HLA-matched epitope pools in the presence of autologous antigen-presenting cells, followed by pool deconvolution to identify specific epitopes. The epitopes identified in this study were combined with those previously identified in the DENV endemic region of Sri Lanka, to generate a “megapool” (MP) consisting of 180 peptides specifically designed to achieve balanced HLA and DENV serotype coverage. The DENV CD4MP180 was validated by intracellular cytokine staining assays. Results We detected responses directed against a total of 431 epitopes, representing all 4 DENV serotypes, restricted by 15 different HLA-DRB1 alleles. The responses were associated with a similar pattern of protein immunodominance, overall higher magnitude of responses, as compared to what was observed previously in the Sri Lanka region. Based on these epitope mapping studies, we designed a DENV CD4 MP180 with higher and more consistent coverage, which allowed the detection of CD4+ T cell DENV responses ex vivo in various cohorts of DENV exposed donors worldwide, including donors from Nicaragua, Brazil, Singapore, Sri Lanka, and U.S. domestic flavivirus-naïve subjects immunized with Tetravalent Dengue Live-Attenuated Vaccine (TV005). This broad reactivity reflects that the 21 HLA-DRB1 alleles analyzed in this and previous studies account for more than 80% of alleles present with a phenotypic frequency ≥5% worldwide, corresponding to 92% phenotypic coverage of the general population (i.e., 92% of individuals express at least one of these alleles). Conclusion The DENV CD4 MP180 can be utilized to measure ex vivo responses to DENV irrespective of geographical location.
Collapse
Affiliation(s)
- Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Michael A Angelo
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Benjamin Lopez
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Patrick H O'Rourke
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Cristhiam Cerpas
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Cassia G T Silveira
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alvino Maestri
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Priscilla R Costa
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Anna P Durbin
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sean A Diehl
- Vaccine Testing Center, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Aruna D De Silva
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,Genetech Research Institute, Colombo, Sri Lanka
| | - Godwin Nchinda
- Chantal BIYA International Reference Centre for Research on the Prevention and Management of HIV/AIDS CIRCB, Yaoundé, Cameroon
| | - Celine Nkenfou
- Chantal BIYA International Reference Centre for Research on the Prevention and Management of HIV/AIDS CIRCB, Yaoundé, Cameroon
| | - Matthew H Collins
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Mei Qiu Lim
- Emerging Infectious Disease Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Paul A Macary
- Immunology Programme, Department of Microbiology and Immunology, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Filippo Tatullo
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
| | - Vijaya Satchidanandam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anita Desai
- Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Vasanthapram Ravi
- Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Lance Turtle
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
| | - Laura Rivino
- Emerging Infectious Disease Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Esper G Kallas
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| |
Collapse
|
40
|
Tassara MP, Guilarde AO, Rocha BAMD, Féres VCDR, Martelli CMT. Neurological manifestations of dengue in Central Brazil. Rev Soc Bras Med Trop 2017; 50:379-382. [PMID: 28700057 DOI: 10.1590/0037-8682-0444-2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/06/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION: The incidence of dengue has increased throughout the 2000s with a consequent global increase in atypical clinical forms. METHODS: This study reports a series of cases of neurological dengue out of 498 confirmed cases of laboratory dengue in Goiânia, Brazil. Cases were confirmed based on viral RNA detection via polymerase chain reaction or IgM antibody capture. RESULTS: Neurological symptoms occurred in 5.6% of cases, including paresthesia (3.8%), encephalitis (2%), encephalopathy (1%), seizure (0.8%), meningoencephalitis (0.4%), and paresis (0.4%). DENV-3 was the predominant circulating serotype (93%). CONCLUSIONS: We reported dengue cases with neurological manifestations in endemic area.
Collapse
Affiliation(s)
- Marianna Peres Tassara
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brasil.,Hospital de Doenças Tropicais Dr. Anuar Auad, Secretaria de Estado da Saúde de Goiás, Goiânia, GO, Brasil
| | - Adriana Oliveira Guilarde
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brasil.,Hospital de Doenças Tropicais Dr. Anuar Auad, Secretaria de Estado da Saúde de Goiás, Goiânia, GO, Brasil
| | | | | | - Celina Maria Turchi Martelli
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brasil.,Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, Brasil
| |
Collapse
|
41
|
Balmaseda Á, Saborío Galo S, González K, Téllez Y, García N, Pérez L, Gresh L, Harris E. Development of in-house serological methods for diagnosis and surveillance of chikungunya. Rev Panam Salud Publica 2017. [PMID: 28902269 PMCID: PMC5638038 DOI: 10.26633/rpsp.2017.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective. To develop and evaluate serological methods for chikungunya diagnosis and research in Nicaragua. Methods. Two IgM ELISA capture systems (MAC-ELISA) for diagnosis of acute chikungunya virus (CHIKV) infections, and two Inhibition ELISA Methods (IEM) to measure total antibodies against CHIKV were developed using monoclonal antibodies (mAbs) and hyperimmune serum at the National Virology Laboratory of Nicaragua in 2014–2015. The sensitivity, specificity, predictive values, and agreement of the MAC-ELISAs were obtained by comparing the results of 198 samples (116 positive; 82 negative) with the Centers for Disease Control and Prevention’s IgM ELISA (Atlanta, Georgia, United States; CDC-MAC-ELISA). For clinical evaluation of the four serological techniques, 260 paired acute and convalescent phase serum samples of suspected chikungunya cases were used. Results. All four assays were standardized by determining the optimal concentrations of the different reagents. Processing times were substantially reduced compared to the CDC-MAC-ELISA. For the MAC-ELISA systems, a sensitivity of 96.6% and 97.4%, and a specificity of 98.8% and 91.5% were obtained using mAb and hyperimmune serum, respectively, compared with the CDC method. Clinical evaluation of the four serological techniques versus the CDC real-time RT-PCR assay resulted in a sensitivity of 95.7% and a specificity of 88.8%–95.9%. Conclusion. Two MAC-ELISA and two IEM systems were standardized, demonstrating very good quality for chikungunya diagnosis and research demands. This will achieve more efficient epidemiological surveillance in Nicaragua, the first country in Central America to produce its own reagents for serological diagnosis of CHIKV. The methods evaluated here can be applied in other countries and will contribute to sustainable diagnostic systems to combat the disease.
Collapse
Affiliation(s)
- Ángel Balmaseda
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Saira Saborío Galo
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Karla González
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Yolanda Téllez
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Nadezna García
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Leonel Pérez
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| |
Collapse
|
42
|
Waggoner JJ, Gresh L, Mohamed-Hadley A, Balmaseda A, Soda KJ, Abeynayake J, Sahoo MK, Liu Y, Kuan G, Harris E, Pinsky BA. Characterization of Dengue Virus Infections Among Febrile Children Clinically Diagnosed With a Non-Dengue Illness, Managua, Nicaragua. J Infect Dis 2017; 215:1816-1823. [PMID: 28863466 PMCID: PMC5853235 DOI: 10.1093/infdis/jix195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/21/2017] [Indexed: 01/25/2023] Open
Abstract
Background We sought to characterize dengue virus (DENV) infections among febrile children enrolled in a pediatric cohort study who were clinically diagnosed with a non-dengue illness ("C cases"). Methods DENV infections were detected and viral load quantitated by real-time reverse transcription-polymerase chain reaction in C cases presenting between January 2007 and January 2013. Results One hundred forty-one of 2892 C cases (4.88%) tested positive for DENV. Of all febrile cases in the study, DENV-positive C cases accounted for an estimated 52.0% of patients with DENV viremia at presentation. Compared with previously detected, symptomatic dengue cases, DENV-positive C cases were significantly less likely to develop long-lasting humoral immune responses to DENV, as measured in healthy annual serum samples (79.7% vs 47.8%; P < .001). Humoral immunity was associated with viral load at presentation: 40 of 43 patients (93.0%) with a viral load ≥7.0 log10 copies/mL serum developed the expected rise in anti-DENV antibodies in annual samples versus 13 of 68 (19.1%) patients with a viral load below this level (P < .001). Conclusions Antibody responses to DENV-positive C cases differ from responses to classic symptomatic dengue. These findings have important implications for DENV transmission modeling, immunology, and epidemiologic surveillance.
Collapse
Affiliation(s)
- Jesse J Waggoner
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine
| | | | - Alisha Mohamed-Hadley
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Angel Balmaseda
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health
| | - K James Soda
- Department of Scientific Computing, Florida State University, Tallahassee
| | - Janaki Abeynayake
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Yuanyuan Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
43
|
Wardhani P, Aryati A, Yohan B, Trimarsanto H, Setianingsih TY, Puspitasari D, Arfijanto MV, Bramantono B, Suharto S, Sasmono RT. Clinical and virological characteristics of dengue in Surabaya, Indonesia. PLoS One 2017; 12:e0178443. [PMID: 28575000 PMCID: PMC5456069 DOI: 10.1371/journal.pone.0178443] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 05/12/2017] [Indexed: 01/28/2023] Open
Abstract
Dengue disease is still a major health problem in Indonesia. Surabaya, the second largest city in the country, is endemic for dengue. We report here on dengue disease in Surabaya, investigating the clinical manifestations, the distribution of dengue virus (DENV) serotypes, and the relationships between clinical manifestations and the genetic characteristics of DENV. A total of 148 patients suspected of having dengue were recruited during February-August 2012. One hundred one (68%) of them were children, and 47 (32%) were adults. Dengue fever (DF) and Dengue hemorrhagic fever (DHF) were equally manifested in all of the patients. We performed DENV serotyping on all of the samples using real-time RT-PCR. Of 148, 79 (53%) samples were detected as DENV positive, with DENV-1 as the predominant serotype (73%), followed by DENV-2 (8%), DENV-4 (8%), and DENV-3 (6%), while 5% were mixed infections. Based on the Envelope gene sequences, we performed phylogenetic analyses of 24 isolates to genotype the DENV circulating in Surabaya in 2012, and the analysis revealed that DENV-1 consisted of Genotypes I and IV, DENV-2 was of the Cosmopolitan genotype, the DENV-3 viruses were of Genotype I, and DENV-4 was detected as Genotype II. We correlated the infecting DENV serotypes with clinical manifestations and laboratory parameters; however, no significant correlations were found. Amino acid analysis of Envelope protein did not find any unique mutations related to disease severity.
Collapse
Affiliation(s)
- Puspa Wardhani
- Department of Clinical Pathology, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Institute for Tropical Diseases, Universitas Airlangga, Surabaya, Indonesia
| | - Aryati Aryati
- Department of Clinical Pathology, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Institute for Tropical Diseases, Universitas Airlangga, Surabaya, Indonesia
| | | | | | | | - Dwiyanti Puspitasari
- Department of Pediatric, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Bramantono Bramantono
- Department of Internal Medicine, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suharto Suharto
- Department of Internal Medicine, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- * E-mail:
| |
Collapse
|
44
|
Hertz T, Beatty PR, MacMillen Z, Killingbeck SS, Wang C, Harris E. Antibody Epitopes Identified in Critical Regions of Dengue Virus Nonstructural 1 Protein in Mouse Vaccination and Natural Human Infections. THE JOURNAL OF IMMUNOLOGY 2017; 198:4025-4035. [PMID: 28381638 DOI: 10.4049/jimmunol.1700029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/06/2017] [Indexed: 01/25/2023]
Abstract
Dengue is a global public health problem and is caused by four dengue virus (DENV) serotypes (DENV1-4). A major challenge in dengue vaccine development is that cross-reactive anti-DENV Abs can be protective or potentially increase disease via Ab-dependent enhancement. DENV nonstructural protein 1 (NS1) has long been considered a vaccine candidate as it avoids Ab-dependent enhancement. In this study, we evaluated survival to challenge in a lethal DENV vascular leak model in mice immunized with NS1 combined with aluminum and magnesium hydroxide, monophosphoryl lipid A + AddaVax, or Sigma adjuvant system+CpG DNA, compared with mice infected with a sublethal dose of DENV2 and mice immunized with OVA (negative control). We characterized Ab responses to DENV1, 2, and 3 NS1 using an Ag microarray tiled with 20-mer peptides overlapping by 15 aa and identified five regions of DENV NS1 with significant levels of Ab reactivity in the NS1 + monophosphoryl lipid A + AddaVax group. Additionally, we profiled the Ab responses to NS1 of humans naturally infected with DENV2 or DENV3 in serum samples from Nicaragua collected at acute, convalescent, and 12-mo timepoints. One region in the wing domain of NS1 was immunodominant in both mouse vaccination and human infection studies, and two regions were identified only in NS1-immunized mice; thus, vaccination can generate Abs to regions that are not targeted in natural infection and could provide additional protection against lethal DENV infection. Overall, we identified a small number of immunodominant regions, which were in functionally important locations on the DENV NS1 protein and are potential correlates of protection.
Collapse
Affiliation(s)
- Tomer Hertz
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - Zachary MacMillen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - Sarah S Killingbeck
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - Chunling Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
45
|
Panraksa P, Ramphan S, Khongwichit S, Smith DR. Activity of andrographolide against dengue virus. Antiviral Res 2016; 139:69-78. [PMID: 28034742 DOI: 10.1016/j.antiviral.2016.12.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/29/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Dengue is the most prevalent arthropod-transmitted viral illness of humans, with an estimated 100 million symptomatic infections occurring each year and more than 2.5 billion people living at risk of infection. There are no approved antiviral agents against dengue virus, and there is only limited introduction of a dengue vaccine in some countries. Andrographolide is derived from Andrographis paniculata, a medicinal plant traditionally used to treat a number of conditions including infections. The antiviral activity of andrographolide against dengue virus (DENV) serotype 2 was evaluated in two cell lines (HepG2 and HeLa) while the activity against DENV 4 was evaluated in one cell line (HepG2). Results showed that andrographolide had significant anti-DENV activity in both cell lines, reducing both the levels of cellular infection and virus output, with 50% effective concentrations (EC50) for DENV 2 of 21.304 μM and 22.739 μM for HepG2 and HeLa respectively. Time of addition studies showed that the activity of andrographolide was confined to a post-infection stage. These results suggest that andrographolide has the potential for further development as an anti-viral agent for dengue virus infection.
Collapse
Affiliation(s)
- Patcharee Panraksa
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Sarawut Khongwichit
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
46
|
Unsuspected Dengue as a Cause of Acute Febrile Illness in Children and Adults in Western Nicaragua. PLoS Negl Trop Dis 2016; 10:e0005026. [PMID: 27792777 PMCID: PMC5085067 DOI: 10.1371/journal.pntd.0005026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022] Open
Abstract
Background Dengue is an emerging infectious disease of global significance. Suspected dengue, especially in children in Nicaragua’s heavily-urbanized capital of Managua, has been well documented, but unsuspected dengue among children and adults with undifferentitated fever has not. Methodology/Principal Findings To prospectively study dengue in semi-urban and rural western Nicaragua, we obtained epidemiologic and clinical data as well as acute and convalescent sera (2 to 4 weeks after onset of illness) from a convenience sample (enrollment Monday to Saturday daytime to early evening) of consecutively enrolled patients (n = 740) aged ≥ 1 years presenting with acute febrile illness. We tested paired sera for dengue IgG and IgM and serotyped dengue virus using reverse transcriptase-PCR. Among 740 febrile patients enrolled, 90% had paired sera. We found 470 (63.5%) were seropositive for dengue at enrollment. The dengue seroprevalance increased with age and reached >90% in people over the age of 20 years. We identified acute dengue (serotypes 1 and 2) in 38 (5.1%) patients. Only 8.1% (3/37) of confirmed cases were suspected clinically. Conclusions/Significance Dengue is an important and largely unrecognized cause of fever in rural western Nicaragua. Since Zika virus is transmitted by the same vector and has been associated with severe congenital infections, the population we studied is at particular risk for being devastated by the Zika epidemic that has now reached Central America. Dengue is an emerging infectious disease of global significance. Unsuspected dengue among children and adults presenting with undifferentiated fever in western Nicaragua has not been studied. We prospectively studied patients ≥ 1 year of age who presented with acute febrile illness in Nicaragua and systematically collected detailed information about exposures and features of the illness as well as serum to confirm acute infections. Overall, 470 (63.5%) had evidence of prior infection with dengue virus; the proportion with antibodies against dengue virus increased with age and reached >90% in those >20 years. Thirty-eight (5.1%) had acute dengue (serotypes 1 and 2) infection. Only 8.1% (3/37) cases were suspected clinically to be dengue. Dengue is an important and largely unrecognized cause of fever in rural western Nicaragua and strikes predominantly those in child-bearing years, the same individuls at risk for devastating complications associated with Zika virus infection that is also transmitted by the Aedes aegypti mosquito.
Collapse
|
47
|
Afroz S, Giddaluru J, Abbas MM, Khan N. Transcriptome meta-analysis reveals a dysregulation in extra cellular matrix and cell junction associated gene signatures during Dengue virus infection. Sci Rep 2016; 6:33752. [PMID: 27651116 PMCID: PMC5030657 DOI: 10.1038/srep33752] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 09/02/2016] [Indexed: 12/28/2022] Open
Abstract
Dengue Viruses (DENVs) cause one of the most prevalent arthropod-borne viral diseases affecting millions of people worldwide. Identification of genes involved in DENV pathogenesis would help in deciphering molecular mechanisms responsible for the disease progression. Here, we carried out a meta-analysis of publicly available gene expression data of dengue patients and further validated the meta-profile using in-vitro infection in THP-1 cells. Our findings reveal that DENV infection modulates expression of several genes and signalling pathways including interferons, detoxification of ROS and viral assembly. Interestingly, we have identified novel gene signatures comprising of INADL/PATJ and CRTAP (Cartilage Associated Protein), which were significantly down-regulated across all patient data sets as well as in DENV infected THP-1 cells. PATJ and CRTAP genes are involved in maintaining cell junction integrity and collagen assembly (extracellular matrix component) respectively, which together play a crucial role in cell-cell adhesion. Our results categorically reveal that overexpression of CRTAP and PATJ genes restrict DENV infection, thereby suggesting a critical role of these genes in DENV pathogenesis. Conclusively, these findings emphasize the utility of meta-analysis approach in identifying novel gene signatures that might provide mechanistic insights into disease pathogenesis and possibly lead towards the development of better therapeutic interventions.
Collapse
Affiliation(s)
- Sumbul Afroz
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Jeevan Giddaluru
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Mohd Manzar Abbas
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Nooruddin Khan
- School of Life Sciences, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad-500046, Telangana, India
| |
Collapse
|
48
|
Faraji A, Unlu I. The Eye of the Tiger, the Thrill of the Fight: Effective Larval and Adult Control Measures Against the Asian Tiger Mosquito, Aedes albopictus (Diptera: Culicidae), in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:1029-1047. [PMID: 27354440 DOI: 10.1093/jme/tjw096] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
The Asian tiger mosquito, Aedes albopictus (Skuse), is a highly invasive container-inhabiting species with a global distribution. This mosquito, similar to other Stegomyia species such as Aedes aegypti (L.), is highly adapted to urban and suburban areas, and commonly oviposits in artificial containers, which are ubiquitous in these peridomestic environments. The increase in speed and amount of international travel and commerce, coupled with global climate change, have aided in the resurgence and expansion of Stegomyia species into new areas of North America. In many parts of their range, both species are implicated as significant vectors of emerging and re-emerging arboviruses such as dengue, chikungunya, and now Zika. Although rapid and major advances have been made in the field of biology, ecology, genetics, taxonomy, and virology, relatively little has changed in the field of mosquito control in recent decades. This is particularly discouraging in regards to container-inhabiting mosquitoes, because traditional integrated mosquito management (IMM) approaches have not been effective against these species. Many mosquito control programs simply do not possess the man-power or necessary financial resources needed to suppress Ae. albopictus effectively. Therefore, control of mosquito larvae, which is the foundation of IMM approaches, is exceptionally difficult over large areas. This review paper addresses larval habitats, use of geographic information systems for habitat preference detection, door-to-door control efforts, source reduction, direct application of larvicides, biological control agents, area-wide low-volume application of larvicides, hot spot treatments, autodissemination stations, public education, adult traps, attractive-toxic sugar bait methods, lethal ovitraps, barrier-residual adulticides, hand-held ultra-low-volume adulticides, area-wide adulticides applied by ground or air, and genetic control methods. The review concludes with future recommendations for practitioners, researchers, private industry, and policy makers.
Collapse
Affiliation(s)
- Ary Faraji
- Salt Lake City Mosquito Abatement District, Salt Lake City, UT 84116 Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, NJ 08901
| | - Isik Unlu
- Center for Vector Biology, Department of Entomology, Rutgers University, New Brunswick, NJ 08901 Mercer County Mosquito Control, West Trenton, NJ 08628
| |
Collapse
|
49
|
Waggoner JJ, Gresh L, Vargas MJ, Ballesteros G, Tellez Y, Soda KJ, Sahoo MK, Nuñez A, Balmaseda A, Harris E, Pinsky BA. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus. Clin Infect Dis 2016; 63:1584-1590. [PMID: 27578819 PMCID: PMC5146717 DOI: 10.1093/cid/ciw589] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/16/2016] [Indexed: 11/15/2022] Open
Abstract
Zika virus, chikungunya virus, and dengue virus result in similar clinical presentations, and coinfections may be relatively common. Accurate, multiplex diagnostics are necessary to detect and differentiate these arboviruses for patient care and epidemiologic surveillance. Background. Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) cocirculate in Nicaragua. In this study, we sought to compare the quantified viremia and clinical presentation of patients infected with 1 or more of these viruses. Methods. Acute-phase serum samples from 346 patients with a suspected arboviral illness were tested using a multiplex real-time reverse-transcription polymerase chain reaction for ZIKV, CHIKV, and DENV. Viremia was quantitated for each detected virus, and clinical information from request forms submitted with each sample was recorded. Results. A total of 263 patients tested positive for 1 or more viruses: 192 patients tested positive for a single virus (monoinfections) and 71 patients tested positive for 2 or all 3 viruses (coinfections). Quantifiable viremia was lower in ZIKV infections compared with CHIKV or DENV (mean 4.70 vs 6.42 and 5.84 log10 copies/mL serum, respectively; P < .001 for both comparisons), and for each virus, mean viremia was significantly lower in coinfections than in monoinfections. Compared with patients with CHIKV or DENV, ZIKV patients were more likely to have a rash (P < .001) and less likely to be febrile (P < .05) or require hospitalization (P < .001). Among all patients, hospitalized cases had higher viremia than those who did not require hospitalization (7.1 vs 4.1 log10 copies/mL serum, respectively; P < .001). Conclusions. ZIKV, CHIKV, and DENV result in similar clinical presentations, and coinfections may be relatively common. Our findings illustrate the need for accurate, multiplex diagnostics for patient care and epidemiologic surveillance.
Collapse
Affiliation(s)
- Jesse J Waggoner
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, California
| | | | - Maria Jose Vargas
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Gabriela Ballesteros
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Yolanda Tellez
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - K James Soda
- Department of Scientific Computing, Florida State University, Tallahassee
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine
| | - Andrea Nuñez
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Angel Balmaseda
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, California.,Department of Pathology, Stanford University School of Medicine
| |
Collapse
|
50
|
Abstract
Dengue is widespread throughout the tropics and local spatial variation in dengue virus transmission is strongly influenced by rainfall, temperature, urbanization and distribution of the principal mosquito vector Aedes aegypti. Currently, endemic dengue virus transmission is reported in the Eastern Mediterranean, American, South-East Asian, Western Pacific and African regions, whereas sporadic local transmission has been reported in Europe and the United States as the result of virus introduction to areas where Ae. aegypti and Aedes albopictus, a secondary vector, occur. The global burden of the disease is not well known, but its epidemiological patterns are alarming for both human health and the global economy. Dengue has been identified as a disease of the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. According to the WHO, dengue control is technically feasible with coordinated international technical and financial support for national programmes. This Primer provides a general overview on dengue, covering epidemiology, control, disease mechanisms, diagnosis, treatment and research priorities.
Collapse
Affiliation(s)
- Maria G Guzman
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Alienys Izquierdo
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Eric Martinez
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Scott B Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|